

Conversion of CO₂ to Alkyl Carbonates Using Ethylene Oxide as Feedstock

C.B. Panchal, Richard Doctor, Rachel Sturtz and John Prindle

E3Tec Service, LLC 2815 Forbs Avenue, Suite 107 Hoffman Estates, Illinois 60192 <u>cpanchal@e3-tec.com</u> <u>www.e3-tec.com</u>

SBIR Phase II Project Status

- Technical: Developed validated ASPEN Plus® design based on pilot-scale tests at Michigan State University
- Economic Analysis: CAPEX for a 50 kTA DMC plant, competitive selling price of DMC compared to syngas-based DMC production, *ProForma* based NPV & IRR
- Intellectual Property: Two patents on DMC process plus one patent on Differential Kinetic Test Unit (DKTU)
- Industry Interactions: Interactions with potential industrial organizations for feedback on TRL status and economic analysis
- Path Forward: Commercial demonstration (build and operate) to validate technoeconomic merits

Alkyl Carbonates - Ideal Candidates for **Conversion of CO₂ to Value-Added Products**

Expanding Market Demands

- High market growth considering replacement of phosgene based process and to meet expanding demands for polycarbonates and surging demand for Li-ion batteries
- \blacktriangleright E3Tec focus on high-purity 99.9%+ CO₂ based DMC
- MEG is one of the top 50 chemicals

POLYCARBONATES

Application	Global DMC Market Potential - kTA*	
	2017	2030
DMC in Polycarbonate Production	2,440	4,910
Li-Ion Battery Electrolyte	45	350
Solvents (replacing ketones)	1,430	1,820
Chemical Intermediate, e.g. Polyurethane	11,350	18,470
Potential diesel oxygenate additive**		1,580,000

*kTA - Thousand Tonnes Per Year ** Based on government approval for pollution control

Alkyl Carbonate Supply Chain

E3Tec's Process Based on Two Chemical Pathways

E³Tec

Ethylene-Oxide-Based Process with Selective Co-Production of Mono-Ethylene Glycol (MEG)

E3Tec's Process Based on Two Chemical Pathways

Urea-based Process with Ammonia Acting as a Chemical Carrier and for Breaking DMC/Methanol Azeotrope

ec

Heat Integrated Reactive Distillation (HIRD) Process

E³Tec

Equipped with Side Reactors & PerVap Membrane

 DMC
 51.7 kTA MEG
 35.8 kTA CO2 Consumption
 25.6 kTA

 Purity of Products:
 DMC
 99.99% wt
 MEG
 98.9% wt

 US Patent 9,518,003 B1 December 2016 and 9,796,656 B1 October 2017

Integrated CO₂ Source DMC Process

Economic Analysis of Integrated Process

E³Tec

Case Study: 15 MWe Coal Plant

Baseline Case	UIUC 15 MW Coal Plant		
Power Generation	15	MWe	
CO ₂ Emission	300	Tonnes / day	
CO2 Capture & Sequestration Costs			
CO ₂ Capture Costs	\$56.2	\$ / Tonne CO ₂	
	\$16,860	\$ / day	
Sequestration Costs	\$44.8	\$ / Tonne CO ₂	
	\$10,080	\$ / day	
COE Impact (assuming 90% availability)			
CO ₂ Capture	\$52	\$/MWe	
CO ₂ Sequestration	\$31		
Total	\$83		
DMC/MEG Production			
Fraction of CO ₂ Emission Consumed in DMC	25%		
CO ₂ Consumption	75	Tonnes / day	
DMC Production	150		
MEG Production	105		
Annual DMC Produciton	50.0	1-7.0	
Annual MEG Production	35.0	kTA	
Product Margin Required for Offsetting CO_2 Cost	5		
CO ₂ Capture & Sequestraiton	\$180	\$ / Tonne DMC	
Commercial Price of 99.99 wt % Purity DMC	\$1,789		
Production Costs of CO ₂ -Based DMC	\$1,285		
Product Margin	\$504		

C-footprint Analysis

ASPEN Plus® based process block diagram

C-footprint Analysis

Offsetting CO₂ Emissions

	CO ₂ -Based Process	Syngas-Based Process
CO ₂ Consumption, tonne CO ₂ /tonne DMC	-0.51	0
CO ₂ Emission Inside Battery Limits (ISBL) Energy Consumption	0.58	1.29
Thermal, MWh/Tonne DMC	2.87	4.41
Electric, MWh/tonne DMC	0.01	0.02
Cooling water, tonnes/tonne DMC CO2 emission Outside Battery Limits (OSBL)	108.0	206.5
Methanol, tonne CO ₂ /tonne DMC Ethylne oxide, tonne CO ₂ /tonne DMC	0.39 0.31	0.47
Total CO ₂ Emission, tonnes CO ₂ /tonne DMC	1.28	1.76
Offsetting CO ₂ Emission of MEG Produciton	-0.58	0
Net Emission tonne CO ₂ /tonne DMC	0.19	1.76

Potential Abatement of CO₂ Emissions

Application	Global CO ₂ Abatement Potentials* kTA	
	2018	2030
DMC in Polycarbonate Production	3,831	7,708
Li-Ion Battery Electrolyte	71	550
Solvents (replacing ketones)	2,245	2,857
Chemical Intermediate, e.g. Polyurethane	17,820	28,998
Potential diesel oxygenate additive**		2,480,600

*Based on offsetting CO₂ emissions by commerial production of DMC by syngas and MEG by hydration of ethylene oxide processes

** Based on government approval for pollution control

Economic Analysis

Competitive Product Margin

	E3Tec Process	Syngas Based Process
Plant Capacity, kTA		
DMC	51.7	50.0
MEG	35.0	0.0
Capital Costs (CAPEX), \$ Million	\$ 164	\$ 223
Costs \$/tonne DMC		
Total Variable	\$ 291	\$ 431
Total Fixed	\$ 196	\$ 254
Cash Cost of Production	\$ 487	\$ 685
Capital Charge	\$ 798	\$ 1,104
Selling Price	\$ 1,285 *	\$ 1,789
Product Margin	\$ 504	

* Taking into credit for MEG as co-product

Economic Analysis Proforma Based NPV and IRR

Economic Parameters

- Plant Service Life30 Years
- Normal Discount Rate
- **Corporate Income Tax**
- **Inflation Rate**
- Net Present Value (NPV) Internal Rate of Return (IRR)

30 Years 9 % 34 % Between 2.2 % & 3.0 % \$ 249 milion 21%

Technology Demo Unit as Next Step

Design Criteria

- Skid-mounted unit with DMC capacity of one tonne per day
- Total Installed Cost (TIC) within \$10 million
- Continuous operation of fully integrated process, including recycle streams
- Catalyst activities for an extended period (12 months or more)
- Demonstrate product yield and purity DMC and MEG
- Scale-up from MSU test unit Demo Unit Commercial plant
- Validation of the ASPEN Plus® design model as well as reactor models

MSU Test Unit

ec

Technology Demo Unit Scaled up from

MSU Test Unit

Path Forward

Partnership Opportunities

- Funding and Investment: Pilot plant demonstration of the technology at a cost of \$10 million with a possibility of SBIR Phase III CRADA funding
- Licensing Partners: Licensing the patented technologies and/or strategic alliances for advancing TRL to commercialization stage
- Facilities: Industrial site for pilot plant demonstration
- Collaboration for Marketing: DMC Offtakes
- Path Forward: Commercial demonstration (build and operate) to validate techno-economic merits