

DESIGN OF TRANSITION-METAL/ZEOLITE

CATALYST FOR DIRECT CONVERSION OF

COAL-DERIVED CO₂ TO AROMATICS

CARBON CAPTURE, UTILIZATION, STORAGE, AND

OIL & GAS TECHNOLOGIES INTEGRATED REVIEW MEETING

IMAN NEZAM, GABRIEL S. GUSMÃO, MATTHEW J. REALFF, ANDREW J. MEDFORD, CHRISTOPHER W. JONES

AUGUST 26-30, 2019

CREATING THE NEXT®

Benzene, Toluene, Xylene

Industrial Applications

Solvent

Global Production (2010)

100 million metric tons

Current Production Technology

Catalytic reforming of naphtha

Precursor to value-added chemicals

2050 Projection

200 million metric tons

Catalyst

Precious metals supported by high surface area materials with acidity

Domestic CO₂ emissions from coal combustion:

BTX

~1350 million metric tons in 2016

Could fully support the BTX global market

CO_2 to BTX $(CO_2 \rightarrow Intermediate \rightarrow BTX)$

Process Intensification approach

Two steps in a single reactor (CO₂ from flue gas, some H₂ source)

- 1. CO₂ to Intermediates (Oxygenate / Hydrocarbon): Trans. Metal (Cu/Co)
- 2. Oligomerization + Aromatization: MFI (ZSM-5)

Related Literature Work

Catalyst	WHSV	Т	Р	H ₂ /CO ₂	Х	S	Υ	Ref.
Unit	(ml/g/h)	(°C)	(bar)		%	%	%	
Na–Fe ₃ O ₄ /HZSM-5	4800	320	10	3	29	44	13	Xu et al., Catal Sci Technol, 2019
Fe/HZSM-5	60	350	2	2	38	22	8	Kuei et al., Can J Chem Eng, 1991
ZnZrO/HZSM-5	1200	320	40	3	14	41	6	Li et al., Joule, 2019
ZnO/ZrO ₂ -ZSM-5	4800	340	30	3	9	50	5	Zhang et al., J CO ₂ Util, 2019
ZnAlO _x /H-ZSM-5	6000	320	30	3	9	47	4	Ni et al., Nat Commun, 2018
Na-Cu-Fe/H-ZSM-5	3000	250	20	3	12	24	3	Xu et al., J Mol Catal A- Chem, 1998

- Limited published studies
- Narrow range of operational conditions/ catalytic characteristics
- No modeling insight available

Experimental Design Strategy

- Retrofitting the reactor
- Computational/experimental investigation of the baseline systems
- Synthesize more complex composite catalyst systems
- Develop reaction/transport models and improve computational model
- Computational model refinement
- Completion of technical and economic feasibility assessments

Experimental Progress

Computational Catalysis Progress

Comprehensive DFT-based mean-field microkinetic catalytic model 28 adsorbate- and 13 gas-species in 42 elementary reactions on Cu(111)

Forward and reverse water-gas shift from [1] Grabow, L.C. and M. Mavrikakis, ACS Catal., 2011.

Oxygenates

methanol, formic acid, formaldehyde from [1]. ethanol, acetic acid and acetaldehyde from *Schumann, J. et al., ACS Catal., 2018.*

Hydrocarbons

methane [1] and ethane from *Martin Hangaard, H. et al., J. Catal. 2019.* Oxygen dissociation from *Falsig, H., et al., Top. Catal., 2014*

Computational Catalysis Progress

DFT-based Catalytic Activity for main CO₂ reduction products

at gas phase concentration 0.90:0.05:0.05 H₂:CO₂:CO

Conclusions

- An experimental process rig has been developed for the catalytic conversion of CO₂ to aromatics.
- DFT-based rates have been calculated for the main expected intermediate species for the CO₂ hydrogenation on Cu(111).

Next steps

- Performing experimental analysis using baseline and tandem catalysts.
- Carry out DFT-calculations for the same microkinetic model on Co(211).

Acknowledgements

We acknowledge the U.S. Department of Energy for financial support through grant DE-FE0026433.

Thank You!