



### Integrated TBC/EBC for SiC Fiber Reinforced SiC Matrix Composites for Next Generation Gas Turbines

DoE UTSR DEFE0031281 (10/2017 – 09/2020) Progress Review Meeting Program Manager: Dr. Robin Ames

Rajendra K. Bordia and Fei Peng Research conducted by Dr. Quan Li Department of Materials Science and Engineering Clemson University

In Collaboration with GE Power Team led by John Delvaux

### **Outlines**

- 1. The concept of integrated TBC/EBC/BC
- 2. Overall Goals
- 3. Objectives
- 4. Project Tasks
- **5. Project Progress**
- 6. Project Short Term Plans



### **1. The concept of integrated TBC/EBC/BC**



 Dense Y<sub>2</sub>O<sub>3</sub> or Yb<sub>2</sub>O<sub>3</sub> top layer ensures low oxygen diffusion and volatilization rates under high temperature high velocity steam environment.

- Graded composition allows smooth transition from SiC to SiBCNO with increasing amount of embedded Y<sub>2</sub>O<sub>3</sub> particles.
  - Graded structure avoids sharp CTE
    mismatch
  - Tolerant to oxidation; further increase
    TBC lifetime
- PDC SiC bond coat/SiC substrate interface provides excellent adhesion



### 2. Overall Goals

Develop an integrated and graded EBC/BC that is:

- Good bonding with CMC;
- Graded compositions without sharp interfaces to mitigate thermal stresses from CTE mismatch;
- Low oxygen transport rate, low oxidation rate and low volatility in high temperature, high velocity steam environment;
- Tolerant to certain degree of oxidation thereby preventing catastrophic failure;
- Chemically stable and compatible with CMC and TBC
- Create a strong collaborative team with complementary expertise and stateof-the-art facilities
  - The Clemson University team of Drs. Bordia and Peng.
  - The GE team, led by John Delvaux



### 3. Objectives

- Investigate the effect of composite stoichiometry (*i.e.* Si/B/C/N ratio in the precursor and the ratio of the Si-based precursor to yttrium oxide (Y<sub>2</sub>O<sub>3</sub>) (or ytterbium oxide (Yb<sub>2</sub>O<sub>3</sub>)) particle filler and processing conditions on the size of the resultant phases and nanostructure of the composite ceramics.
- Investigate the effect of the composition and nanostructure on the thermal properties and oxidation and volatilization behavior in oxidizing and high velocity steam environments. The control parameters are the stoichiometry of the precursor (*e.g.* Si/B/C/N ratio) and the volume fraction of the oxide particles Y<sub>2</sub>O<sub>3</sub> (or Yb<sub>2</sub>O<sub>3</sub>) and range of microstructures produced as part of the first objective



### 3. Objectives (contd.)

- Process the graded Y<sub>2</sub>O<sub>3</sub> (or Yb<sub>2</sub>O<sub>3</sub>) particulate /silicon boron carbon nitride (SiBCN) matrix composite coating and investigate the phase and microstructure stability during high velocity steam exposure at temperatures up to 1500°C.
- Develop a method to create Y<sub>2</sub>O<sub>3</sub> (or Yb<sub>2</sub>O<sub>3</sub>) and SiBCN powders with predetermined compositions suitable for atmospheric plasma spraying (APS). The powders will be provided to the industrial collaborators for the fabrication of integrated environmental barrier coating/bond coating (EBC/BC) using APS.
- Evaluate the performance of integrated BC/EBCs from APS under high velocity steam environments at temperatures up to 1500°C.



### 4. Project Tasks

- Task 1: Project management and planning
- Task 2: Processing and stability of Y<sub>2</sub>O<sub>3</sub>-Si-B-C-N and Yb<sub>2</sub>O<sub>3</sub>-Si-B-C-N composites
- Task 3: Thermal and oxidation response of Y<sub>2</sub>O<sub>3</sub>-Si-B-C-N and Yb<sub>2</sub>O<sub>3</sub>-Si-B-C-N composites
- Task 4: Processing and performance of graded coatings processed using cold spray and pyrolysis
- **Task 5:** Processing and performance of graded coatings processed using atmospheric plasma spraying (APS)



### Task 1.0: Project management and planning

- ✤ Kickoff meeting 10/27/17
- ✤ A poster at the 2017 UTSR review meeting
- Recruitment of UG students and post doc to work on the project
- Coordination with GE Team including scheduling review meetings
- Regular review meetings with DoE Program Manager and GE team
- ✤ A talk and a poster at the 2018 UTSR review meeting



Task 2: Processing and stability of  $Y_2O_3$ -Si-B-C,  $Yb_2O_3$ -Si-B-C,  $Y_2O_3$ -Si-B-C-N and  $Yb_2O_3$ -Si-B-C-N composites

Completed:

Acquired raw materials ( $Y_2O_3$ ,  $Yb_2O_3$ , preceramic precursors, and *etc.*)

Developed the processing procedure, and characterization plan

- Sintered and characterized dense Y<sub>2</sub>O<sub>3</sub> ceramics to be applied as the top layer
- Fabricated Y<sub>2</sub>O<sub>3</sub>-Si-C-N and Y<sub>2</sub>O<sub>3</sub>-Si-C-B composite ceramic powders and achieved submicron particle sizes
- Studied the processing of composites in the Y<sub>2</sub>O<sub>3</sub>-Si-C-B and the Y<sub>2</sub>O<sub>3</sub>-Si-C-N system. Investigated the effect of composition and processing temperature on density, porosity, phase, and composition

Current Focus:

- Study synthesis atmosphere and heat-treatment effects on Y<sub>2</sub>O<sub>3</sub>-Si-C-B and the Y<sub>2</sub>O<sub>3</sub>-Si-C-N microstructure and composition
- Process and characterize Yb<sub>2</sub>O<sub>3</sub>-Si-C-B and Yb<sub>2</sub>O<sub>3</sub>-Si-C-N composites



#### **Raw materials:**

| Raw materials                  | Specifications               | Supplier                                 | Function in the system     |  |
|--------------------------------|------------------------------|------------------------------------------|----------------------------|--|
| Y <sub>2</sub> O <sub>3</sub>  | Purity: 99.9%; APS: 0.5~1 µm | American Elements (USA)                  | Ceramic filler             |  |
| Yb <sub>2</sub> O <sub>3</sub> | Purity: 99.9%; APS: 3~5 μm   | American Elements (USA)                  | Ceramic filler             |  |
| Durazane 1800                  | Polysilazane                 | Merck KGaA (Germany)                     | Precursor for SiCN ceramic |  |
| SMP10                          | Polycarbosilane              | Stafire (USA)                            | Precursor for SiC ceramic  |  |
| Decaborane                     | Purity: 98%                  | Alfa Aesar (USA)                         | Boron source               |  |
| Disperbyk-2070                 |                              | BYK (Germany)                            | Dispersant                 |  |
| Dicumyl peroxide (DCP)         | Purity: 99%                  | Acros Organics (USA)                     | Cross-link agent           |  |
| Cyclohexane                    | Purity: 99%                  | Alfa Aesar (USA)                         | Solvent for SMP10          |  |
| Di-n-butyl ether (DNB)         | Purity: 99%                  | Acros Organics (USA) Solvent for Durazan |                            |  |

#### **Processing procedure:**



In order to eliminate the oxygen and moisture,

#### Processing Protocol for SiCN/Y<sub>2</sub>O<sub>3</sub> composite

|                    | Completed     | Co                                    | omposition            | Processing       | Dwell    | Processing    | Processing   |
|--------------------|---------------|---------------------------------------|-----------------------|------------------|----------|---------------|--------------|
|                    | Sample Id     | Y <sub>2</sub> O <sub>3</sub> (vol.%) | Durazane 1800 (vol.%) | temperature (°C) | time (h) | atmosphere    | method       |
|                    | D10:90-1500   | 10                                    | 90                    | 1500             | 2        | Argon         | Pressureless |
|                    | D30:70-1500   | 30                                    | 70                    | 1500             | 2        | Argon         | Pressureless |
| Composition effect | D50:50-1500   | 50                                    | 50                    | 1500             | 2        | Argon         | Pressureless |
|                    | D70:30-1500   | 70                                    | 30                    | 1500             | 2        | Argon         | Pressureless |
|                    | Dd90:10-1500  | 90                                    | 10                    | 1500             | 2        | Argon         | Pressureless |
|                    |               |                                       |                       |                  |          |               |              |
|                    |               | Co                                    | mposition             | Processing       | Dwell    | Processing    | Processing   |
| •                  | Sample lu     | Y <sub>2</sub> O <sub>3</sub> (vol.%) | Durazane 1800 (vol.%) | temperature (°C) | time (h) | atmosphere    | method       |
|                    | D30:70-1300   | 30                                    | 70                    | 1300             | 2        | Argon         | Pressureless |
| Processing         | D30:70-1400   | 30                                    | 70                    | 1400             | 2        | Argon         | Pressureless |
| temperature effect | D30:70-1500   | 30                                    | 70                    | 1500             | 2        | Argon         | Pressureless |
|                    | D30:70-1600   | 30                                    | 70                    | 1600             | 2        | Argon         | Pressureless |
|                    | D30:70-1650   | 30                                    | 70                    | 1650             | 2        | Argon         | Pressureless |
|                    |               |                                       |                       |                  |          |               |              |
|                    | Sample Id     | C                                     | omposition            | Processing       | Dwell    | Processing    | Processing   |
|                    | Sample Id     | Y <sub>2</sub> O <sub>3</sub> (vol.%) | Durazane 1800 (vol.%) | temperature (°C) | time (h) | atmosphere    | method       |
|                    | D30:70-1500-a | 10                                    | 90                    | 1500             | 2        | Air, Nitrogen | Pressureless |
| Processing         | D30:70-1500-a | 30                                    | 70                    | 1500             | 2        | Air, Nitrogen | Pressureless |
| atmosphere effect  | D30:70-1500-a | 50                                    | 50                    | 1500             | 2        | Air, Nitrogen | Pressureless |
|                    | D30:70-1500-a | 70                                    | 30                    | 1500             | 2        | Air, Nitrogen | Pressureless |
|                    | D30:70-1500-a | 90                                    | 10                    | 1500             | 2        | Air, Nitrogen | Pressureless |
|                    |               |                                       |                       |                  |          |               |              |
| •                  | Sample Id     | Co                                    | omposition            | Processing       | Dwell    | Processing    | Processing   |
|                    | Campie la     | Y <sub>2</sub> O <sub>3</sub> (vol.%) | Durazane 1800 (vol.%) | temperature (°C) | time (h) | atmosphere    | method       |
|                    | D10:90-1500-h | 10                                    | 90                    | 1500             | 2        | Argon         | Hot press    |
| Processing         | D30:70-1500-h | 30                                    | 70                    | 1500             | 2        | Argon         | Hot press    |
| method effect      | D50:50-1500-h | 50                                    | 50                    | 1500             | 2        | Argon         | Hot press    |
|                    | D70:30-1500-h | 70                                    | 30                    | 1500             | 2        | Argon         | Hot press    |
|                    | D90:10-1500-h | 90                                    | 10                    | 1500             | 2        | Argon         | Hot press    |

Same protocol for SiCN/Yb<sub>2</sub>O<sub>3</sub>, SiC(B)/  $Y_2O_3$  and SiC(B)/  $Yb_2O_3$  composite

**Composite Characterization** 

TGA-DTA: cross-linked powders, weight loss and thermal behavior

Density and porosity test: ceramic samples, density and porosity changes

- XRD: ceramic samples, phase conversion processes and crystalline phase compositions

- Raman spectrum: ceramic samples, phase compositions

-SEM: ceramic samples, surface microstructure

**TEM**: ceramic samples, composition and microstructure

-Thermal expansion test: ceramic samples, coefficient of thermal expansion

-TMA test: ceramic samples, elastic modulus

Thermal conductivity test: ceramic samples, thermal conductivity

### **5. Task 2-Sintering of Y<sub>2</sub>O<sub>3</sub> Top Coat**

Y<sub>2</sub>O<sub>3</sub> ceramic pellets were fired at 1400, 1450, 1500°C for 2h in air



10.0kV 8.8mm x10.0k SE(M)



S4800 10.0kV 9.1mm x5.00k SE(M)

10.0um





S4800 15.0kV 9.6mm x10.0k SE(M)

### 5. Task 2-Sintering of Y<sub>2</sub>O<sub>3</sub> Top Coat (contd.)



Density increases and porosity decreases with increasing processing temperature

- □ At 1500°C, the relative density reaches 97% with only 0.5% of open porosity
- Some closed pores in the inside of sample. Increase firing time may reduce more pores
- $\square$  Y<sub>2</sub>O<sub>3</sub> fabricated at 1500°C can be used at top EBC coating

### 5. Task 2-Composite Ceramic Powder

The  $Y_2O_3/SiCN$  and  $Y_2O_3/SiC(B)$  ceramic powders were made. In order to get better sintering behavior, these powders were ground to fine particle.

#### Y<sub>2</sub>O<sub>3</sub>/SiCN composite

| Somple Id   | Composition      |                                |  |
|-------------|------------------|--------------------------------|--|
| Sample lu   | $Y_2O_3$ (vol.%) | PDC from durazane 1800 (vol.%) |  |
| D10:90-1500 | 10               | 90                             |  |
| D30:70-1500 | 30               | 70                             |  |
| D50:50-1500 | 50               | 50                             |  |
| D70:30-1500 | 70               | 30                             |  |
| D90:10-1500 | 90               | 10                             |  |

#### Y<sub>2</sub>O<sub>3</sub>/SiC(B) composite

| Sampla Id   | Composition                           |                        |  |  |
|-------------|---------------------------------------|------------------------|--|--|
| Sample lu   | Y <sub>2</sub> O <sub>3</sub> (vol.%) | PDC from SMP10 (vol.%) |  |  |
| S10:90-1500 | 10                                    | 90                     |  |  |
| S30:70-1500 | 30                                    | 70                     |  |  |
| S50:50-1500 | 50                                    | 50                     |  |  |
| S70:30-1500 | 70                                    | 30                     |  |  |
| S90:10-1500 | 90                                    | 10                     |  |  |

### 5. Task 2-Composite Ceramic Powder

Spex milling (1 hour) to reduce particle size reduction of crosslinked and pyrolyzed powders



As expected, significant smaller particle size of the pyrolyzed ground powders than the cross-linked powder since the pyrolyzed ceramic is brittle.

□ However, particle size still too large. Target particle size is sub-micron.

### 5. Task 2-Composite Ceramic Powders

- Several different milling approaches were evaluated.
- Optimized milling approach: 1 hour Spex mill for crosslinked powder; 60 hours planetary ball mill for pyrolyzed powders

Y<sub>2</sub>O<sub>3</sub>-Si-C-B system



After grinding for 60h, the ceramic powders have sub-micron particle size distribution.

### 5. Task 2-Composite Ceramic Powders

#### Particle size reduction-Summary

| SiCN/Y <sub>2</sub> O <sub>3</sub> composite   |                                       |                       |                              |                    |                       |
|------------------------------------------------|---------------------------------------|-----------------------|------------------------------|--------------------|-----------------------|
| Sample Id                                      | Composition                           |                       | Sunthasis terms creture (8C) | Original Time (b)  | Average particle size |
| Sample Id                                      | Y <sub>2</sub> O <sub>3</sub> (vol.%) | Durazane 1800 (vol.%) | Synthesis temperature (°C)   | Grinding Time (fr) | (µm)                  |
| D10:90                                         | 10                                    | 90                    | 900                          | 36                 | 0.84                  |
| D30:70                                         | 30                                    | 70                    | 900                          | 36                 | 0.75                  |
| D50:50                                         | 50                                    | 50                    | 900                          | 36                 | 0.84                  |
| D70:30                                         | 70                                    | 30                    | 900                          | 36                 | 0.78                  |
| D90:10                                         | 90                                    | 10                    | 900                          | 36                 | 0.57                  |
| SiC(B)/Y <sub>2</sub> O <sub>3</sub> composite |                                       |                       |                              |                    | Average particle size |
| Sample Id                                      | Y <sub>2</sub> O <sub>3</sub> (vol.%) | Durazane 1800 (vol.%) | Synthesis temperature (°C)   | Grinding Time (h)  | (μm)                  |
| S10:90                                         | 10                                    | 90                    | 900                          | 60                 | 0.60                  |
| S30:70                                         | 30                                    | 70                    | 900                          | 60                 | 0.77                  |
| S50:50                                         | 50                                    | 50                    | 900                          | 60                 | 0.35                  |
| S70:30                                         | 70                                    | 30                    | 900                          | 60                 | 0.55                  |
| S90:10                                         | 90                                    | 10                    | 900                          | 60                 | 0.53                  |
|                                                |                                       |                       |                              |                    |                       |

Using the optimized grinding procedure, all the powders can be ground to an average particle size smaller than 1  $\mu$ m.

### Powder characterization-FTIR and XRD



- □ For Y<sub>2</sub>O<sub>3</sub>-Durazane system, Si-H, Si-CH<sub>3</sub>, Si-NH-Si, Si-CH<sub>2</sub>-Si from cross-linked Durazane, while Y-O from Y<sub>2</sub>O<sub>3</sub>.
- For Y<sub>2</sub>O<sub>3</sub>-SMP10 system, Si-H, Si-CH<sub>3</sub>, and Si-CH<sub>2</sub>-Si from cross-linked SMP10, while Y-O from Y<sub>2</sub>O<sub>3</sub>.
- □ After pyrolysis at 900°C, only Y<sub>2</sub>O<sub>3</sub> phases are shown in the XRD curves. This is because SiCN ceramic is amorphous after pyrolysis

 $Y_2O_3$ /SiCN pellets were fired at 1400, 1500 and 1600°C under a flowing argon. The density, open porosity and microstructure were characterized

Y<sub>2</sub>O<sub>3</sub>/SiCN ceramic pellets (1400°C) characterization-Phase composition

Sample **Phase compositions**  $\nabla Y_2 SiO_5 \quad \diamondsuit Y_{4,67} (SiO_4)_3 O$ ★ YSiO<sub>2</sub>N  $\Box Y_{2}O_{2}$ YSiO<sub>2</sub>N, Y<sub>2</sub>SiO<sub>5</sub>, Y<sub>3</sub>Si<sub>6</sub>N<sub>11</sub>, Y<sub>4.67</sub>(SiO<sub>4</sub>)<sub>3</sub>O 10-90  $\nabla Y_3 Si_6 N_{11}$  O  $Y_4 Si_2 O_7 N_2$  $Y_{4.67}(SiO_4)_3O_1Y_2SiO_5Y_2O_3$ 30-70  $Y_{4.67}(SiO_4)_3O_1Y_2SiO_5Y_2O_3$ of Y Y 50-50 Intensity (a.u.)  $Y_2O_3, Y_2SiO_5$ 90-10 70-30  $Y_{2}O_{3}, Y_{2}SiO_{5}$ 90-10 70-30 50-50  $Y_2O_3(s) + SiO_2(s) = Y_2SiO_5(s)$  $Y_2O_3(s) + Si_2N_2O(s) = 2YSiO_2N(s)$ 30-70  $4Y_2O_3(s) + Si_3N_4(s) + SiO_2(s) = 2Y_4Si_2O_7N_2$ 10-90  $2.335Y_2O_3(s) + 3SiO_2(s) = Y_{4.67}(SiO_4)_3O(s)$ 20 10 30 40 50 60  $2\theta$  (Degree)  $2/3Y_{467}(SiO_4)_3O(s) + 4/9Y_2O_3 = 2Y_2SiO_5$ 

No Si<sub>3</sub>N<sub>4</sub> or SiC phases are detected in the samples, mainly because the amorphous SiCN is stable up to 1500 °C

### Y<sub>2</sub>O<sub>3</sub>/SiCN ceramic composites (1400°C) characterization-Microstructure



Sample 10-90 polished surface



S4800 15.0kV 9.5mm x10.0k SE(M)

5.00um



S4800 15.0kV 8.3mm x10.0k SE(U)

21

### Y<sub>2</sub>O<sub>3</sub>/SiCN ceramic pellets (1400°C) characterization-Microstructure





S4800 15.0kV 9.3mm x10.0k SE(M)





### Y<sub>2</sub>O<sub>3</sub>/SiCN ceramic pellets (1400°C) characterization-Microstructure





#### **Density characterizations:**

- 1. Green density (geometric):
- 2. The bulk densities ( $\rho_b$ ) and open porosities ( $P_o$ ) of fired pellets were obtained from Archimedes' method according to the ASTM standard
- 3. The skeletal densities ( $\rho_s$ ) of fired pellets were obtained through helium pycnometer test.

The relative density ( $\rho_r$ ) and total porosity ( $P_t$ ) of fired pellets were obtained from the following equations:  $\rho_r = \frac{\rho_b}{\rho_s} \times 100$   $P_t = (1 - \frac{\rho_b}{\rho_s}) \times 100$ 

Y<sub>2</sub>O<sub>3</sub>/SiCN ceramic composites (1400°C) characterization-Density and Porosity







- □ The green densities, bulk densities and skeletal densities of samples show increasing trend with increasing Y<sub>2</sub>O<sub>3</sub> volume. Density of Y<sub>2</sub>O<sub>3</sub> (5.01 g/cm<sup>3</sup>) > Density of PDC-SiCN
- ❑ The highest relative density is 84%.

Y<sub>2</sub>O<sub>3</sub>/SiCN ceramic composites (1600°C) characterization-Phase composition



Y<sub>2</sub>O<sub>3</sub>/SiCN ceramic composites (1600°C) characterization-Microstructure



S4800 15.0kV 9.8mm x10.0k SE(M)



S4800 15.0kV 10.2mm x10.0k SE(M)

5.00um



Sample 70-30 Fracture surface

S4800 15.0kV 9.9mm x10.0k SE(M)

3. Y<sub>2</sub>O<sub>3</sub>/SiCN ceramic composites (1600°C) characterization-Microstructure



3. Y<sub>2</sub>O<sub>3</sub>/SiCN ceramic pellets (1600°C) characterization-Microstructure



Y<sub>2</sub>O<sub>3</sub>/SiC(B) ceramic composites (1500°C) characterization-Phase composition



The main crystallized phases are Y<sub>2</sub>O<sub>3</sub> and Y<sub>2</sub>SiO<sub>5</sub>

### Y<sub>2</sub>O<sub>3</sub>/SiC(B) ceramic composites (1500°C) characterization-Microstructure



1800 15.0kV 9.1mm x10.0k SE(M)







S4800 15.0kV 7.8mm x5.00k SE(M

#### Sample 50-50 polished surface

Y<sub>2</sub>O<sub>3</sub>/SiC(B) ceramic composites(1500°C) characterization-Microstructure



S4800 15.0kV 9.5mm x10.0k SE(M)



S4800 15.0kV 7.8mm x10.0k SE(M)

The surface after polishing becomes smoother when the volume of  $Y_2O_3$  is greater than 30%.

1. Y<sub>2</sub>O<sub>3</sub>/SiC(B) ceramic pellets (1500°C) characterization-Density and porosity



Summary of Progress on Processing and stability of  $Y_2O_3$ -Si-B-C,  $Yb_2O_3$ -Si-B-C,  $Y_2O_3$ -Si-B-C-N and  $Yb_2O_3$ -Si-B-C-N composites

- High density top coat processed
- Composite powders synthesized over a broad range of compositions
- Milling procedure optimized
- Effect of processing temperature on the density and microstructure in some systems investigated and quantified (Y<sub>2</sub>O<sub>3</sub>-Si-B-C, and Y<sub>2</sub>O<sub>3</sub>-Si-B-C-N)
- The densities of the intermediate layers are in the acceptable range.

Ongoing work

- Complete the effect of processing temperature on the density and microstructure
- Effect of processing atmosphere



# Task 4: Processing and performance of graded coatings processed using cold spray and pyrolysis

- The cold spray system to make coatings has been assembled (100% completion)
- Purchased the tube furnace for the investigation of oxidation response of the composites (100% completion)
- Designing and setting up the steam jet oxidation furnace (60% completion)



A controlled spray system to make coatings from liquid precursors or slurries



### In the next few months work work will focus on

# Task 2.0: Processing and stability of Y<sub>2</sub>O<sub>3</sub>-Si-B-C-N and Yb<sub>2</sub>O<sub>3</sub>-Si-B-C-N composites

 Studies on the processing of composites in the Y<sub>2</sub>O<sub>3</sub>-Si-C-B and the Y<sub>2</sub>O<sub>3</sub>-Si-C-N systems – effect of synthesis atmosphere and synthesis method on density, porosity and phase composition

# Task 3: Thermal and oxidation response of $Y_2O_3$ -Si-B-C-N and $Yb_2O_3$ -Si-B-C-N composites

 Complete the experimental setup to investigate the oxidation response of the composites (under high velocity steam) and begin these studies.









### Thank you very much for your attention and support





