Valuing CCS with a Electricity Grid

An Australian Case Study

29 August 2019

Geoff Bongers Gamma Energy Technology Adjunct Professor @ UQ

Steph Byrom Gamma Energy Technology

Andy Boston Red Vector

Levelised Cost of Electricity

LCOE

A simple metric designed to compare fossil plants, it takes no account of 'the system.'

Assumption is that generation = MWh available

LCOE = Variable Cost + (<u>Fixed Cost + Annualised Capex</u>) Annual Availability

System Cost of Replacement Electricity

Calculated for NEM, closing oldest coal where possible.

SCoRE

SCoRE is similar to LCOE but takes account of the value of the technology to the system and its affect on system cost. It is designed to compare technology cost in a decarbonisation scenario.

SCoRE is lower at low decarbonisation because takes into account of plant that can be retired when new plant is added (unabated coal in this case)

Curtailment of renewables increasingly reduces its value at medium to high penetration

SCoRE = Increase in Total System Cost due to New Plant Annual Generation of New Plant*

Where TSC = Sum (variable + fixed + annualised capex) For all plant on the system

TSC benefits from closure of old high carbon plant which is replaced by new technology (so long as system adequacy is not compromised.)

LCOE vs SCoRE

SCoRE is a metric intended to replace LCOE, but has its limitations compared to a full Total System Cost approach

Comparators	Examples	LCOE	SCoRE	TSC
Thermal plant for Baseload energy	Coal, gas, biomass	Yes - ideal	Yes - but overly complex	Yes - but overly complex
Inflexible thermal plant	Nuclear	No - deceptively high	Yes	Yes
Variable renewables	Wind, PV	No - deceptively high	Yes	Yes
Plant delivering grid services only	Synchronous condensers, standby	No - divide by zero error	No - divide by zero error	Yes
Storage	Batteries, pumped hydro	No - becomes negative	No - becomes negative	Yes

MEGS: Modelling Energy & Grid Services

For more details and information...

We are online:

Twitter @GammaEnergyTech

Facebook @GammaEnergyTech

LinkedIn: gamma-energy-technology & red-vector WWW

www.powerfactbook.com & redvector.co.uk

