Development of High Sensitivity Fiber for Distributed Acoustic Sensing

Project ID FP00007226

Barry Freifeld
Lawrence Berkeley National Laboratory

Robert Mellors and Michael Messerly
Lawrence Livermore National Laboratory

U.S. Department of Energy
National Energy Technology Laboratory
Mastering the Subsurface Through Technology Innovation, Partnerships and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting
August 13-16, 2018
Presentation Outline

• Fiber-optic DAS sensing 101
• Fiber Bragg Gratings
• Outline of Proposed Work – engineered fiber to improve S/N
 – LLNL Draw tower facility
 – Fiber test plan (Richmond Field Station)

This project just started in June – no new results are available yet.
Fiber Fundamentals

(A) \[\text{loss [dB/km]} = \frac{0.75 + 66 \Delta n}{(\lambda [\mu m])^4} \]

\(\lambda \) Wavelength

\(\Delta n \) Index difference core to cladding

(B) \[\Omega \approx \pi NA^2 = 2\pi n \Delta n \]

Fiber’s numerical aperture

Refractive index of silica

0.2 dB/km SMF-28

DFOAS signal generated by a 10m segment of fiber is \(A \times B = (4.5 \times 10^{-4}) \times (4.2 \times 10^{-3}) = 1.9 \times 10^{-6} \)
DAS Sensing 101

- DAS is based on phase sensitive OTDR (Rayleigh Scattering)
- There are several (many) different photonic pathways to extracting phase information from backscattered light (see A. Hartog’s book: CRC Press - An Introduction to Distributed Optical Fibre Sensors)

Figure 2 Schematic arrangement and specimen signals for DVS system with interferometric phase demodulation.
Reflection from discrete step:

\[R \approx \left(\frac{\delta n}{2n}\right)^2 \]

<table>
<thead>
<tr>
<th>Step (\delta n)</th>
<th>Reflectance, (R)</th>
<th>Signal lost after 1000 reflectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0 \times 10^{-3}</td>
<td>1.9 \times 10^{-6}</td>
<td>0.2%</td>
</tr>
<tr>
<td>13 \times 10^{-3}</td>
<td>19 \times 10^{-6}</td>
<td>2%</td>
</tr>
</tbody>
</table>
LLNL-LBNL High Sensitivity Fiber Fabrication Plan

<table>
<thead>
<tr>
<th>Subtask Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1 Project Management and Planning</td>
</tr>
<tr>
<td>Task 2 Investigate Writing Index Steps in Optical Fiber with LEDs</td>
</tr>
<tr>
<td>Task 3 Investigate Writing Index Steps in Optical Fiber with visible and UV lasers</td>
</tr>
<tr>
<td>Task 4 Specify, procure and install an optical system for fabricating engineered DAS fibers on the LLNL draw tower system</td>
</tr>
<tr>
<td>Task 5 Fabricate a custom fiber having in-line aperiodic index structures</td>
</tr>
<tr>
<td>Task 6 Field testing of an engineered fiber with aperiodic index structures</td>
</tr>
</tbody>
</table>
LLNL optical fiber fabrication

3-story tower

Glass working lathe

Preform assembly

Preform in 2000C furnace
Development of Optical Fiber Test Facility

- Seismic source test pad (SOVs, piezo-sources)
- HDD test borings (permanent conduit to install/remove sensing strings)
- Deep test well
Silixa Carina Fiber

[Correa et al., 2017]
Conventional SMF vs Silixa Constellation (May 2017)
SOV 2 (165 s to 80 Hz sweeps), stack 14 sweeps

Direction 1 Direction 2 Direction 1 Direction 2

Enhanced sensitivity fibre
Standard single-mode fibre
Synergy Opportunities

The benefits of this project can tie into all ongoing projects that use DAS sensing. Improvements in SNR will open up new applications and monitoring methodologies for DAS that are currently limited by the lower sensitivity in comparison to conventional seismic sensors.
Project Summary

– The Engineered Fiber project was just initiated.

– LLNL is testing methodologies for writing aperiodic structures into optical fiber. This will include methods using UV-LEDs and lasers.

– LBNL is planning to construct cables using the new fiber first on the benchtop and eventually at our fiber test facility.
Appendix

– These slides will not be discussed during the presentation, **but** are mandatory.
Benefit to the Program

• DAS sensing is recognized as a methodology that can cost effectively be used for multi-decadal monitoring of GCS

• The primary limitation of DAS sensing is its low SNR, which has limited to applications with a strong signal content, like VSP monitoring.

• Developing high sensitivity DAS fiber will lead to new applications (such as surface reflection monitoring) and consider to reduce the overall cost of an effective seismic monitoring program.
Project Overview
Goals and Objectives

- Describe the project goals and objectives in the Statement of Project Objectives.
 - How the project goals and objectives relate to the program goals and objectives.
 - Identify the success criteria for determining if a goal or objective has been met. These generally are discrete metrics to assess the progress of the project and used as decision points throughout the project.
Barry Freifeld, LBNL
PI

Michelle Robertson
LBNL
Responsible for Geosciences Measurement Facility

Robert Mellors, LLNL
coPI

Michael Messerly
LLNL
Responsible for optical fiber draw-tower and photonics lab

Sensing cable design and seismic test evaluation
Optical fiber modification and characterization
<table>
<thead>
<tr>
<th>Subtask Description</th>
<th>Q3 FY18</th>
<th>Q4 FY18</th>
<th>Q1 FY19</th>
<th>Q2 FY19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Management and Planning</td>
<td></td>
<td>A</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Investigate Writing Index Steps in Optical Fiber with LEDs</td>
<td></td>
<td>C</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Investigate Writing Index Steps in Optical Fiber with visible and UV lasers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specify, procure and install an optical system for fabricating engineered DAS fibers on the LLNL draw tower system</td>
<td></td>
<td>E</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Fabricate a custom fiber having in-line aperiodic index structures</td>
<td></td>
<td></td>
<td>G</td>
<td>H</td>
</tr>
<tr>
<td>Field testing of an engineered fiber with aperiodic index structures</td>
<td></td>
<td></td>
<td>I</td>
<td>J</td>
</tr>
</tbody>
</table>
Bibliography

- New project just initiated (no publications yet)