CCSMR Task 2: 2nd Generation SOV-DAS

Project ESD14095

¹Barry Freifeld, ^{1,2}Julia Correa and ²Roman Pevzner ¹Lawrence Berkeley National Laboratory ²Curtin University

U.S. Department of Energy National Energy Technology Laboratory Mastering the Subsurface Through Technology Innovation, Partnerships and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting

August 13-16, 2018

Presentation Outline

- Motivation for SOV-DAS Technology
- 1st Generation SOV-DAS
 - Otway Project Deployment
 - ADM Lessons learned
- 2nd Generation SOV-DAS (THIS PROJECT)
 - Redesign of SOV (swept S_H source)
 - Improvements to DAS Sensing
 - Planned Otway Stage 3 Deployment

Why Seismic for Imaging CO₂

Conventional campaign-based systems small T, large N

SOV-DAS permanent monitoring system large T, moderate N

Surface Orbital Vibrator – VFD Controlled AC Induction Motor

SOV for permanent reservoir monitoring

Sweep-based: controlled release of seismic energy

Not phase-controlled: simpler system

DAS records before deconvolving source sweeps (t_{shift} up to 20 ms)

Same records after deconvolving source sweeps ($t_{shift} < 1 ms$)

- Helical Cable shows good sensitivity to reflected P.
- Straight telecom less sensitivity

Test SOV-DAS with Silixa Carina System (May 2017)

- Sweep design:
 - Up to 80 Hz
 - ~10 t force at 80 Hz
 - 155 s sweep (30 s upsweep, 5 s hold, 120 s downsweep)
- 14 sweeps stacked each direction

SOV sources

Conventional SMF vs Constellation (May 2017) SOV 2 (165 s to 80 Hz sweeps), stack 14 sweeps

Conventional SMF vs Constellation (May 2017) SOV 1 (165 s to 80 Hz sweeps), stack 14 sweeps

VSP processing flow

Upgoing waves SOV2 (clockwise + counter-clockwise directions)

Deconvolution with sweeps Band pass filter Statics to adjust sweeps Stack of multiple sweeps Geometry assignment Band pass filter Wavefield separation (FK filter) S- and PS-waves attenuation Amplitude correction VSP to CDP transform Kirchhoff VSP migration

DAS/SOV1 in comparison with Geophone surface seismic

 DAS/SOV 2D line shows good match with crossline acquired with conventional geophone surface seismic (Monitor 5 survey)

> **Crossline** from **conventional** geophone surface seismic acquired using vibroseis source

> > DAS/SOV1 2D line

CDP

ADM IMS Fiber Optic and CASSM Layout

EARTH AND ENVIRONMENTAL SCIENCES • LAWRENCE BERKELEY NATIONAL PABORATORY

Swept SOV

- Allow for swept azimuthal orientation of S_H
- Detect anisotropy using shear wave splitting

Otway Stage 3 Concept

- Build on previous experience and infrastructure at the site (2 large, 2 small injections)
- Drill 4 -5 new wells at the CO2CRC Otway test site, to form a subsurface monitoring array
- Injection of 15 30 kt will simulate a leak and track migration
- Install 10 SOVs and use HDD for surface fiber installation below water table

Seismic coverage by 10 permanent sources / DAS / vertical wells

Accomplishments to Date

- Tested Silixa Carina Fiber at CRC-3 using SOVs
- Compared 80 Hz 10 T-f SOV with 160 Hz 2.5 T-f
- Currently building the first SOV with swept S_H
- Plan to install 10 SOVs at Otway Project Site for multi-well VSP and surface reflection survey.

Lessons Learned

- Optimal source signature depends upon local geology and conditions such as location of the water table.
 - Geophones located too deep can lead to ghosting and notches in the source signature
 - Further work is needed to identify optimal placement and processing techniques for source-receiver deconvolution
- Moving data from the DAS system located in the field to offsite for analysis faces bandwidth limitations (snail mail common method)
- Operation of the SOVs under extreme low temperatures (<-15 °C) should be avoided
- SOV-DAS in the VSP geometry yields good SNR whereas surface reflection SOV-DAS needs greater sensitivity

Synergy Opportunities

- SOVs are planned to be used in the Eagle Ford Shale Laboratory project (Texas A&M, LBNL and Wildhorse Resources LLC)
- Planning is underway for deploying an SOV with an oil & gas operator in the California central valley to monitor tertiary recovery
- EGS projects, such as at FORGE, could benefit from the oriented S_H SOV to identify anisotropy and evaluate fracture stimulation

Project Summary

- Time-lapse VSP acquired with SOV can be used to conduct continuous reservoir monitoring (with automated acquisition and data processing);
- Acquiring VSP surveys using DAS and SOV sources offers an alternative to surface vibroseis surveys for TL monitoring;
- DAS/SOV provide datasets sufficient to image injection depth;
- Large motors (high force) provide better signal to noise ratio than higher frequency smaller sources.

Appendix

These slides will not be discussed during the presentation, but are mandatory.

Benefit to the Program

- Goal (1) Develop and validate technologies to ensure 99 percent storage permanence by reducing leakage risk through early detection mitigation.
- Goal (2) Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness by advancing monitoring systems to control and optimize CO2 injection operations.
- Successful development of SOV-DAS will enable more cost effective monitoring and can serve to either reduce or replace more expensive traditional 4D seismic methods.

Project Overview

Goals and Objectives

- Project Goal: To improve the performance of SOV-DAS by trialing new field hardware and data processing methodologies. Develop best practice and guidance for incorporating SOV-DAS into permanent reservoir monitoring programs.
- This project will be considered a success if it is able to improve SOV-DAS performance such that it provides equal or better quality data as compared to current state-of-the-art approaches to seismic acquisition.

Organization Chart

- Barry Freifeld, LBNL PI
- Julia Correa, LBNL and Curtin University, Data processing and analysis
- Todd Wood, LBNL, Electrical engineering and software development
- Paul Cook, LBNL, Mechanical engineering
- Michelle Robertson, Project Scientists field logistics and operations management
- Collaborators:
 - Australian CO2CRC and Curtin University (Roman Pevzner lead scientist for Otway Stage 3 experiment
 - ADM IMS Project, Scott McDonald PI

Gantt Chart for LBNL Target Research Program

Milestone Reporting accompanies Quarterly	01 EV/19		00 EV/19			02 51/10							
report		<u>QI FYI</u>			<u> 72 F Y I</u>	8		<u></u> <u></u> <u></u> <u></u> <u></u> <u></u>			Q4 FY 18		
Subtask Description	ОСТ	NOV	DEC	JAN	FEB	MAR	AP R	MAY	JU N	лп	AUG	SEP	
Task 1 Project Management and Planning	001		DLC	UIII	TLD		K			UCL	neg	5LA	
Task 2 SOV-DAS						A *						В	
Task 3 Monitoring Leakage: Joint EM and Seismic						С			D				
Task 4 Monitoring Technology for Deep CO ₂ Injection						Е			F				
Task 5 US-Japan CCS Collaboration on Fiber-Optic Technology									G			н	
Task 6 Fault-Leakage and Security						I						J*	

Task	Milestone Description*	Q1	Fiscal	Year Q3	2018 Q4	Planned Start Date	Planned Completion Date (Reporting Date)**	Actual Start Date	Actual End Date	Comment (notes, explanation of deviation from plan)
Milestone 2-1 (A)	Stage 3 SOV-DAS installation – field architecture and data processing plan		x			1/1/2018	3/31/18 (4/30/18)			AOP Tracked
Milestone 2-2 (B)	Data analysis report for CRC-3 installation SOV data				х	1/1/2018	9/30/18 (10/31/2018)			
* No fewer than two (2) milestones shall be identified per calendar year per task (per previously separate project)										**Note: Milestone reporting accompanies quarterly report, one month after end of quarter.

Bibliography

- Correa, J., Egorov, A., Tertyshnikov, K., Bona, A., Pevzner, R., Dean, T., Freifeld, B., Marshall, S., Analysis of signal to noise and directivity characteristics of DAS VSP at near and far offsets - A CO2CRC Otway Project data example, The Leading Edge December 01, 2017, Vol.36, 994a1-994a7. doi:10.1190/tle36120994a1.1
- Correa, J., Freifeld, B., Robertson, M., Pevzner, R., Bona, A., Tertyshnikov, K., and Daley, T., (2018) 3D vertical seismic profiling acquired using fibre-optic sensing DAS – results from the CO2CRC Otway Project, AEGC 2018: Sydney, Australia.
- Freifeld, B., Dou, S., Ajo-Franklin, J., Robertson, M., Wood, T., Daley, T., White, D.J., Worth, K., Pevzner, R., Yavuz, S., dos Santos Maia Correa, J., McDonald, S., Using DAS for reflection seismology – lessons learned from three field studies (invited talk) AGU Fall Meeting, New Orleans, 11-15 Dec 2017.