&ewd, U.S. DEPARTMENT OF

< \E) UNIVERSITY O}
3 MICHIGAN
' I
Qa .5;0

ATES Obeg

Storing CO, in Built Infrastructure:
CO, Carbonation of Precast Concrete Products

Award No. DE-FE0030684

Principal Investigator: Dr. Brian R. Ellis
Assistant Professor, University of Michigan
Co-PlIs: Dr. Victor C. Li, and Dr. Steven J. Skerlos

NETL Project Review Meeting, August, 2019



E ;:F i University of Michigan - Storing CO, in Built Infrastructure: CO, Carbonation of Precast Concrete Products

DOE NETL
Project Overview PleelfEe R LD
Katy Daniels
I

a. Funding: o
* DOE: $999,999 industry o T H o
e Cost share: $250,000 iz £ Li Skerlos

Tech Transfer
[ [

b. Overall Project Performance Dates Postdoc ME/CEE Ph.D
e 10/2017 Kickoff meeting D':e;ﬁzrg::;g ig:dﬁ::
e 10/2017-03/2019 Budget period 1
« No-cost extension CS'iE::n't)
e 07/2019-12/2020 Budget period 2 Julsilas AdeaE

c. Project Participants
e Principal investigators: Brian R. Ellis, Victor C. Li (co-PI), Steven ]. Skerlos (co-PI)
e Post-doc research fellow: Duo Zhang
e Visiting scholars: Beata Jaworska, Alex Neves Junior
e (Graduate students: Tae Lim, Jubilee Adeoye

d. Overall Project Objectives

Utilize CO, and coal combustion fly ash in developing novel construction materials;

Provide a net reduction in life-cycle emissions and cost.
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Technology Background: Coupling CO, storage with novel
cement materials to support sustainable infrastructure
o?u@ Strain Hardening %

Crack Localization

Engineered Cementitious Composite (ECC
Advantages:
e Self-healing properties
e Controlled crack width < 50 um
e ‘Bendable’ concrete

e Offers improved durability, longer
lifetime of precast concrete products

Tensile Stress, IMpa
Eun:ram

Challenges:

e Maximize CO, sequestration without Tensile Strain, %
compromising ECC ductility

Rail Ties as demonstration product
e Improve product lifetime (~50yr)
* No need for pre-stressed steel

reinforcement, which has benefits from
both a cost and longevity perspective
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CO, + hydration products

Technology Background Carbonation Curing
Coal-fire power plants ﬁ
- i
v ol Precast Industry
B ——> i — CO, + unhydrated cement

Process
optimization

Novel Infrastructure Materials
Target products: Railway ties

e Faster production;
e Longer durability;

S8 . | ower life-cycle cost

AR S ENEREREN =

Engineered Cementltlous CompOSIte



Project Scope

Task 1: Project Management and Planning

_________________________________________________________________

9 Budget Period 2

10/2017 -06/2019

9 Budget Period 1

Task 2 ( Task 3
Development of Integration of ECC
carbonation process t products

Carbonation setup and
process development

Development of ductility
and mechanical integrity

Success Criteria: Carbonation process and mix design
of ECC reaching a minimum of 10% CO, stored

Products:

Sustainable Chemistry & Engineering, 6(12), 15976-15981.
Wu, H. L., Zhang, D,, Ellis, B. R., & Li, V. C. (2018). Development

07/2019 - 12/2020

| |

Task 4 Task 5
Full-scale railway tie Life-cycle CO, emissions
product integration analysis

Durability evaluation and
full-scale railway tie

| Life-cycle inventory for
| development

carbonated ECC railway tie

Success Criteria: Carbonated ECC rail tie with life
cycle carbon and energy footprints 20% lower than
current concrete ties, meeting AREMA standards

Zhang, D, Li, V. C,, & Ellis, B. R. (2018). Optimal pre-hydration age for CO, sequestration through Portland cement carbonation. ACS

of reactive MgO-based Engineered Cementitious Composite (ECC) through

accelerated carbonation curing. Construction and Building Materials, 191, 23-31.

Li, V.C, Ellis, B.R., & Zhang, D. Sustainable ductile construction
2 prospective journal manuscripts)

material with CO, sequestration. Patent Application Submitted. (containing
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Progress - Task 2. Development of carbonation process

Fly ash carbonation

Mass increase due to carbonation

(%)

S P, N W H» U1 OO N ©@©

Estimated CO, uptake in fly ash

~7%

N

1

3 4

Type of fly ash

Carbonation condition:
Pure CO,, 75 psi, for 24 hours

Fly ash #4 shows

compositional

similarity to high-

volume fly ash ECC
0.4 version.

0.6

I *\

f

/\m//%/\/\
Portland c

200 10 CaO
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Subtask 2.2. CO, carbonation of caustic solid waste: (2) Steelmaking slag

Sample ID Slag 1 Slag 2 Steel slag demonstrates ability of
Moisture content 9.8% 3.2% sequestering CO,.
CO, uptake, by mass 7.7% 1.9%

>1000 pm 425-1000 pm 212-425 pm 105-212 pm 75-105 pm <75 pm

be@O0@

>1000 pm 425-1000 pm 212-425 pm 105-212 pm 75-105 pm <75 pm
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Subtask 2.2. CO, carbonation of caustic solid waste: (3) reactive MgO cement

O Clinkering temperature is lower for MgO (700°C) than
Portland cement (1450°C).

0 MgO takes up more than 40% CO, to form binding properties.

________________________________

Energy, GJ/m3 Net CO, emission, kg/m?3
00
8 ’ “50%MgO + 50% Fly ash” were
7 . .
000 used for ECC integration.
6 500
5
400 | oIS \
4
300
3 POTTTIEIEEEIEEEETN, U I
5 |t ; N 200 s |
1| | | 1 100 |
| i ’ i Published in Wu et al,, 2018, Constr Build Mater.
0 : . : 0 T i
concrete ECC Mg0 70% ECC :\\MgO 50% ECC,,‘ concrete ECC MgO 70% ECC iMgO 50% ECC!

_____________

______________
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Subtask 2.3. Process optimization for maximal CO, storage

Carbonation behavior

23h

71h

14 -
& Carbonation-induced sample mass increase

12 { mEmSample CO; uptake
@ =@==Carbonation-induced sample water evaporation
210 -
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Pre-hydration

- 10

Carbonation-induced water evporation (%)

Bound water content (%%)

2 ]

Bound water |

-l

Post-carbonation behavior
Bound water i CH (1)

28d compressive sli'ungth

Bound water I

._I'.

] - Bound water in C-S-H, AFt and AFm (I)

Man-
carbonated
sample

r """"""" []

P
.'.I'..

I: I
0h 5h

A new parameter — “pre-hydration” is identified in process optimization.
* Longer pre-hydration reduces CO, uptake but increases long-term strength and bound water content.

ITh

23ih

Pre-hydration

T1h

i Reference i

I8

= b

20

l6

28d compressive strength (MPa)
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Subtask 2.3. Process optimization for maximal CO, storage

Post-hydration | Published in Zhang et al., 2018,
___product ' ACS Sustainable Chem Eng

CO, carbonation Post-hydration
. .. - - . 1 1
: | Microstructural characterization
CO,+ H,0| H,0,
—- : suggests that longer pre-hydration
I ' I
Unreacted : ! is beneficial for dispersing
I .
Cady e E CaCO; - POSt‘hY;"a“o“ + hydration products through
———————— e | product 1 _ _ _
E Pre-hydration i : E » enabling a seeding effect during
¥ : ! : : :
i §t : : : i \ post-carbonation hydration.
s ] | | ]
[ I ! " | I
| ! | |
! \ E : \ . . : | . . . E
! 'CO‘)"’ H')O' " :H20| I
| | — | o . & o
| 1 [ | - I
- * 0 Mg N
I ‘9 | - 4 | - ,\ I
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Subtask 3.1. Matrix characterization

Compressive strength

Compressive strength (MPa)

60

)
o

o
o

w
o

[\
o

[
o

HH

O non-carbonated
O carbonation-cured

HH

H

ECC M45: compressive strength is comparable

between carbonation curing and non-carbonated

reference.

ECC high-volume fly ash: carbonation curing

ECC, M45

Specimen batch

ECC, HVFA

slightly reduced compressive strength.

M45: fly ash/cement =1.2
HVFA: fly ash/cement =2.2
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Subtask 3.1. Matrix characterization

Fracture toughness Km, according to ASTM E399

0.6
mNon'carb‘onated . P « ECCM45: comparable

05 @ Carbonation-cured | .pO‘imrn—é fracture toughness
— 5 between carbonation
[ 54 - curing and non-
g o 254 rm o carbonated reference.
5 03 - e ECC high-volume fly
P ash: fracture toughness
_;E’b 02 - is reduced after
3 carbonation curing.
=

0.1 -

0 :

M45 High-volume fly ash
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Subtask 3.1. Matrix characterization

Fly ash reaction degree, by selective dissolution test according to RILEM TC 238-SCM

35

Pt N N W
%)} o O]} o

p—
o

Fraction of reacted fly ash (%)

29.5

2.9

B Early age
® 28 days

0.1 0.2

- —e

Non-carbonated

Carbonation-cured

Pozzolanic reaction degree of fly ash is
significantly reduced by carbonation
curing

This is attributed to low alkalinity in the
carbonated materials



University of Michigan - Storing CO, in Built Infrastructure: CO, Carbonation of Precast Concrete Products

Subtask 3.4. Micromechanical analysis of composite response and re-design route

Uniaxial tensile experiment, according to JSCE recommendation

A2

13 mm

» Testing ages: early (immediately after
carbonation) and 28 days;

e Tension loading rate: 0.5mm/min.

< 30 mm -

Loading direction
| €= ssmm —»| 0mm | €= S0mm —p | 0mm |a=s5smm —»| B
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Subtask 3.4. Micromechanical analysis of composite response and re-design route

~
1

(=}
1

Stress (MPa)
S

[#5]
1

(52}
1

(a) M45, Early age

(b) M45, 28 days Non-carbonation

7 o
24-hour
Carbonation curing 6 1
b/ - 5 -
E 1-hour
o4 Carbonation curing
§ 24-hour
& 3 Carbonation curing
/' 2
Non-carbonation
1
: : 04 Fiber surface abrasion after
1 2 3 4 5 6

. 0 1 2 3 4 5 6 tension test.
Strain (%) Strain (%)

Early age: carbonation curing expedited development of tensile strength and ductility;

28 days:

carbonation curing led to comparable tensile strength, but slightly reduced tensile ductility (>3%)

Combined fiber breakage and surface abrasion represent the failure of PVA fibers in carbonation-cured ECC.
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Subtask 3.4. Micromechanical analysis of composite response and re-design route

To restore tensile ductility at 28 days, we attempted:

Incorporation of artificial flaw; — ———————————
Fiber surface modification;

Incorporation of high volume fly ash;

Incorporation of MgO mineral.

SO W

Method A was proven the most effective approach to
restore tensile ductility of carbonation-cured ECC

Compressive strength: 50 MPa
Ultimate tensile strength: 5.8 MPa
Tensile strain capacity: 4.5% > 2% (proposed goal)

Stress (MPa)

8

7

o

(&3]

.

(%]

Restore 28-day tensile ductility with Method A

Strain (%)
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Subtask 3.4. Micromechanical analysis of composite response and re-design route: Alternative binders ECC

ECC based on binary blends of reactive MgO cement and fly ash

Tensile stress (MPa)

Tensile stress (MPa)

— 1 day
3 days
—7 days

MNon-carbonated at 1 day

(a) Non-carbonated, 70%4Mg0

2 3 4 5 6
Tensile strain (%)

—1 day

3 days
— 7 days

(c) Non-carbonated, 50%Mg0

Non-carbonated at 1 day

bd

3 4 5 6
Tensile strain (%)

Tensile stress (MPa)

Tensile stress (MPa)

7
t |=—— 1l day | (b) Carbonation-cured, 70%Mg0
6 F|—3days
L | — 7 days

I-'L:II}-—-.'th?numi at | day

3 4 5 6 7
Tensile strain (%)

(d) Carbonation-cured, 50%Mg0

Fujly-carbonated at | day

3 4 5 6 7
Tensile strain (%)

ECC made with MgO-fly ash blends can

achieve tensile ductility up to 5%.
MgO-ECC can be used as a low-carbon
alternative of ECC M45 for precast

applications.

MgO-ECC demonstrates potentials of
self-healing.

Published in Wu et al,, 2018, Constr Build Mater.
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Progress Summary of Tasks 1-3

Laboratory setups
0 Carbonation reactors at 1-8 atm

o TGA/DSC
O Full-scale carbonation chamber: to be manufactured by Chonhunteda Composite Co.,Ltd

New carbonation process
O Optimal carbonation condition (within 48 hours) and achieved ~30% CO, uptake

Mechanical properties (ECC-M45)
0 Tensile strength: accelerated by carbonation curing at early age, and comparable at 28 days
0 Tensile strain capacity: slightly reduced by carbonation curing but can be restored to >4%

New classes of ECC with alternative binders
0 Fly ash-based cement-free ECC
0 MgO-based ECC

Continuing and Future work (Tasks 4-5):

* Performance evaluation and full-scale railway tie experiments
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Future Plans:
Task 4. Composite-product integration and testing

Task 1: Project Management and Planning

o Budget Period 1 ! ‘ o Budget Period 2

| l 10/2017 - 03/2019 l ; l 07/2019 - 12/2020 l

i Task 2 ( Task 3 i Task 4 Task 5

l Development of Integration of ECC Full-scale railway tie Life-cycle CO, emissions

: carbonation process t products l product integration analysis

i  Carbonation setup and  Development of ductility i * Durability evaluation and » Life-cycle inventory for

: process development and mechanical integrity | full-scale railway tie carbonated ECC railway tie

development
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Task 4. Composite-product integration and testing

. Milestone:
Subtask 4.1. Long-term durability Carbonated ECC meeting durability
(a) Intrinsic crack width: criteria of 50 years under accelerated
e Crack numbers testing conditions

e Crack width = histogram of crack width distribution

(b) Permeability:
» Water permeability under loaded condition versus unloaded condition
* Observation of crack width and closure due to self-healing

(c) Sulfate attack:

e Changes in mass, length, mechanical integrity and ductility will be assessed in various sulfate
and alkaline solutions

(d) Fatigue:
* Four-point flexural loading fatigue experiment with observation of crack propagation

(e) Self-healing:
 Self-healing in Water and Na,S0, solution.
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Task 4. Composite-product integration and testing

Subtasks 4.2 and 4.3. Process Integration and Costing at Scale

Image from: www.fra.dot.gov

21
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Task 4. Composite-product integration and testing

Milestone:
Carbonated ECC rail tie meeting
AREMA standards

Subtasks 4.2 and 4.3. Process Integration and Costing at Scale

Milestone:

Carbonated ECC rail tie with life
cycle cost 20% lower than current
concrete ties

!
ﬁii .
Rail Ties

22

Image from: www.fra.dot.gov



E ;:F i University of Michigan - Storing CO, in Built Infrastructure: CO, Carbonation of Precast Concrete Products

Funding Support:

Correspondence
Brian R. Ellis, Ph.D.
Tel: (734)-763-5470

Email: brellis@umich.edu
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