Mechanistic Approach to Analyzing and Improving Unconventional Hydrocarbon Production

U.S. Department of Energy National Energy Technology Laboratory Mastering the Subsurface Through Technology Innovation, Partnerships and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting August 13-16, 2018

> Bill Carey, Luke Frash, George Guthrie, Qinjun Kang, Satish Karra, Nataliia Makedonska, Phong Nguyen, Nathan Welch, Hongwu Xu

Part 1: Tributary zone fractures (small-scale) contributions to hydrocarbon production in the Marcellus shale Presentation by Bill Carey

Overview of Project

Target: Enable technological solutions to improve recovery efficiency through an improved fundamental understanding

Technical Status: Tributary Fracture Zone Studies

- Completed experimental characterization of Marcellus shale carbonate-rich lithology
 - Fracture permeability as a function of stress at which fracture forms
 - Fracture permeability as a function of changes in stress after fracture formation
- Developed experimental approach for study of fracture drainage processes using microfluidics

Experimental Approach: Triaxial Direct Shear Coreflood with X-ray Tomography Carey et al., J. Unconv. O&G Res., 2015; Frash et al. (2016) JGR; Frash et al. (2017) IJGGC

- Max Pressure: 34.5 MPa (5,000 psi)
- Max Axial Load: 500 MPa (70,000 psi)
- Max Temperature: 100 °C

3.0 MPa Effective Confining

90.00 min X-ray radiography and tomography at reservoir conditions

What controls the transmissivity of natural and stimulated fractures?

Tasks 4.1-2: What controls the transmissivity of natural and stimulated fractures?

Tasks 4.1-2: What controls the transmissivity of natural and stimulated fractures?

Tasks 4.1-2: What controls the transmissivity of natural and stimulated fractures?

Experimental Approach: High P-T Microfluidics using Shale

- Max Pressure: 10.3 MPa (1,500 psi)
- Max Temperature: 80 °C
- 3 simultaneous fluids among water, oil, CO₂, N₂, Xe,...

Confining pressure and temperature control system

b) Connected fracture network

a) Closed end fracture network

Profilometry showing fracture geometry

Oil recovery with CO₂ depressurization in connected fracture network

Nguyen et al. (submitted) Applied Energy

Los Alamos National Laboratory

CARE VIELD CONTRACTOR AND THE THE

Oil recovery with N₂ depressurization in connected fracture network

d) Oil saturation = 85%, P = 2.8 MPa

a) Initial Oil saturation, P = 10 MPa b) Oil saturation = 93%, P = 7 MPa

c) Oil saturation = 92%, P = 3.5 MPa

e) Oil saturation = 80%, P = 0.5 MPa

f) Oil saturation = 60%, P = 0.2 MPa

Nguyen et al. (submitted) Applied Energy

Oil Recovery Efficiency: Supercritical CO₂ very effective

- Complex fracture systems trap oil unless injected fluid is soluble in oil
- Connected fractures enhance oil mobility but allow bypass and stranding
- Previous work conducted as part of DE-FE 0024311 with Texas Tech on CO₂-EOR in shale

Nguyen et al. (submitted) Applied Energy

Lessons Learned

- Very important difference between the stress at which fractures form and changes in stress after fracture formation
- Unknown at this time whether these differences persist through geological time
 - -Important in relation to reactivation of fractures
- Lithology/mineralogy plays an important role that is not yet understood
- Miscible fluids can be very effective for enhanced recovery even in dead-end fracture systems

Synergy Opportunities

- Marcellus Shale Energy and Environment Laboratory: Work with MSEEL core
- USEEL and Permian Basin projects also represent good collaboration opportunities
- National Risk Assessment Project: Analysis of leakage risk from caprock
- SubTER: Permeability manipulation
- Other projects in Oil and Gas Fundamental Science Portfolio
- Emphasizing geochemistry (SLAC), nanopore interactions (Sandia), hydraulic fracturing propagation (LBNL)
- Caprock studies for CO₂ sequestration: Colorado School of Mines, NETL, UT-Austin
- Fracture behavior and stress/strain: Penn State, Clemson, UT-Austin

Accomplishments to Date

We postulate that fracture permeability is subject to critical transitions that can are key to design of hydraulic fracturing operations.

- We quantified the impact of fracture depth (i.e., stress) on fracture aperture (permeability) for the carbonate-facies of the Marcellus shale
- We identified a critical stress controlling formation of permeable fractures and hypothesize that this impacts the design of hydraulic fracturing operations
- Next, we apply the new theory to more lithologies and to the development of improved hydraulic fracturing designs

Appendix

Benefit to the Program

- Measurement of the permeability and multiphase flow behavior in small-scale fractures comprising the tributary fracture zone
- Improving the efficiency of hydraulic fracturing through production curve analysis
- Determination of key mechanisms controlling unconventional oil and gas migration
- Development of tools to analyze production cures and thereby enhance hydrocarbon production

Project Overview Goals and Objectives

Quantification of fracture-network permeabilities

-Use state-of-the-art facilities to measure and characterize permeability at reservoir conditions

• Determine influence of reservoir stress conditions on fracture permeability

-Fracture-permeability as a function of the conditions of fracture formation (i.e., depth) and as a function of changing stress conditions (potential effect of fracture closure)

Multiphase fluid flow processes

 – Use high P/T microfluidics system to directly observe and characterize multiphase flow in fractures

Organization Chart

Gantt Chart

	Gantt Chart	FY	716	FY17				FY18					1
Task#	Task	Q3	Q4	Q1	Q1	Q2	Q4	Q1	Q2	Q3	Q4	Product	Dependencies
4.0	Tributary zone fractures (small-sca contributions to hydrocarbon produc in the Marcellus sha												Start requires results from 2.1
4.1	Quantification of fracture-network permeabilities of the Marcellus shale					complete						Complete. Results described in report detailing the variation in permeability as a function of geomechanical conditions for the Marcellus shale. Results published in Frash et al. (2017)	
4.2	Impact of reservoir stress conditions on fracture permeabilit Marcellus shale						complete					Complete. Results described in report detailing the variation in permeability as a function of changing effective stress for fractures formed in the Marcellus shale. Results published in Frash et al. (2017).	
4.3	Multiphase fluid flo processes within fractured shale											Report detailing the mobility of hydrocarbon in fracture networks as a function of network complexity in the Marcellus shale	Requires results from 4.1
4.4	Integration of tribut fracture zone proper with DFN simulatio											Report detailing the potential effects of the tributary fracture zone on hydrocarbon productivity	Requires results from 3.1, 3.2, 4.1

Bibliography

- Nguyen, P., Carey, J. W., and Viswanathan, H. S. (submitted). Effectiveness of supercritical-CO₂ and N₂ huff-and-puff methods of enhanced oil recovery in shale fracture networks using microfluidic experiments. Applied Energy.
- Frash, L. P., J. W. Carey, T. Ickes, and H. S. Viswanathan (2017) Caprock integrity susceptibility to permeable fracture creation, International Journal of Greenhouse Gas Control, 64, 60 72.
- Frash, L. P., J. W. Carey, T. Ickes, M. L. Porter, and H. S. Viswanathan, Permeability of fractures created by triaxial direct shear and simultaneous x-ray imaging, in 51th US Rock Mechanics / Geomechanics Symposium held in San Francisco, CA, USA, 26-28 June 2017, p. 5, 2017.
- Carey, J. W., Frash, L. P., and Viswanathan, H. S. (2016). Dynamic Triaxial Study of Direct Shear Fracturing and Precipitation-Induced Transient Permeability Observed by In Situ X-Ray Radiography. In 50th US Rock Mechanics/Geomechanics Symposium held in Houston, Texas, USA, 26-29 June 2016.
- Frash, L. P., Carey, J. W., Ickes, T., and Viswanathan, H. S. (2016). High-stress triaxial direct-shear fracturing of Utica shale and in situ X-ray microtomography with permeability measurement. Journal of Geophysical Research.
- Jiménez-Martínez, J., Porter, M. L., Hyman, J. D., Carey, J. W., and Viswanathan, H. S. (2016). Mixing in a three-phase system: Enhanced production of oil-wet reservoirs by CO2 injection. Geophysical Research Letters, 43:196-205.