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Overview of Project

Target: Enable technological solutions to improve recovery efficiency through
an improved fundamental understanding

Across Scales

Karra @ 1:35 Carey @ 1:15 Kang @ 1:55
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Technical Status: Tributary Fracture Zone Studies

« Completed experimental
characterization of Marcellus
shale carbonate-rich lithology

— Fracture permeability as a function
of stress at which fracture forms

— Fracture permeability as a function
of changes in stress after fracture
formation

 Developed experimental
approach for study of fracture
drainage processes using
microfluidics
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Experimental Approach: Triaxial Direct Shear Coreflood with X-ray Tomography

Carey et al., J. Unconv. O&G Res., 2015; Frash et al. (2016) JGR; Frash et al. (2017) IJGGC

— Max Pressure: 34.5 MPa (5,000 psi)
— Max Axial Load: 500 MPa (70,000 psi) X-ray radiography and tomography at
— Max Temperature: 100 °C reservoir conditions
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What controls the transmissivity of natural and stimulated fractures?

Hypothesis: The transmissivity of fracture networks can be predicted through a analysis of
rock properties and stress conditions (deformation depth).

Intact Rock

Frash et al. (2017) IJGGC



Tasks 4.1-2: What controls the transmissivity of natural and stimulated fractures?

Hypothesis: The transmissivity of fracture networks can be predicted through a analysis of
rock properties and stress conditions (deformation depth).

Newly Formed Fractures

Frash et al. (2017) IJGGC
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Tasks 4.1-2: What controls the transmissivity of natural and stimulated fractures?

Hypothesis: The transmissivity of fracture networks can be predicted through a analysis of
rock properties and stress conditions (deformation depth).

Existing Fractures

Frash et al. (2017) IJGGC
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Tasks 4.1-2: What controls the transmissivity of natural and stimulated fractures?

Hypothesis: The transmissivity of fracture networks can be predicted through a analysis of
rock properties and stress conditions (deformation depth).

Frash et al. (2017) IJGGC
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Experimental Approach: High P-T Microfluidics using Shale

— Max Pressure: 10.3 MPa
(1,500 psi)
— Max Temperature: 80 °C

— 3 simultaneous fluids among
water, oil, CO,, N,, Xe,...
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Approach: Experimental study of oil displacement in complex fractures

a) Closed end fracture network b) Connected fracture network
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Oil recovery with CO, depressurization in connected
fracture network

a) Initial Oil saturation, P=10MPa  d) Oil saturation = 15%, P = 2.5 MPa
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f) Oil saturation = 5%, P = 1MPa

Nguyen et al. (submitted) Applied Energy
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Oil recovery with N, depressurization in connected
fracture network

a) Initial Oil saturation, P = 10 MPa d) Oil saturation = 85%, P = 2.8 MPa
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Oil Recovery Efficiency: Supercritical CO, very effective

Connected Fracture Network Dead-end Fracture Network

» Complex fracture systems trap oil unless injected
fluid is soluble in oil

» Connected fractures enhance oil mobility but
allow bypass and stranding

» Previous work conducted as part of DE-FE
0024311 with Texas Tech on CO,-EOR in shale Nguyen et al. (submitted) Applied Energy
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L essons Learned

* Very important difference between the stress at which fractures form
and changes in stress after fracture formation

 Unknown at this time whether these differences persist through
geological time
—Important in relation to reactivation of fractures

e Lithology/mineralogy plays an important role that is not yet understood

* Miscible fluids can be very effective for enhanced recovery even in
dead-end fracture systems
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Synergy Opportunities

» Marcellus Shale Energy and Environment Laboratory: Work with MSEEL core

« USEEL and Permian Basin projects also represent good collaboration
opportunities

* National Risk Assessment Project: Analysis of leakage risk from caprock
« SUbTER: Permeability manipulation
» Other projects in Oil and Gas Fundamental Science Portfolio

« Emphasizing geochemistry (SLAC), nanopore interactions (Sandia), hydraulic
fracturing propagation (LBNL)

» Caprock studies for CO, sequestration: Colorado School of Mines, NETL, UT-
Austin

* Fracture behavior and stress/strain: Penn State, Clemson, UT-Austin
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Accomplishments to Date

We postulate that fracture permeability is subject to critical transitions that can are key to design of hydraulic
fracturing operations.

* We quantified the impact of fracture depth (i.e., stress) on fracture aperture
(permealbility) for the carbonate-facies of the Marcellus shale

» We identified a critical stress controlling formation of permeable fractures and
hypothesize that this impacts the design of hydraulic fracturing operations

* Next, we apply the new theory to more lithologies and to the development of improved
hydraulic fracturing designs
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Benefit to the Program

 Measurement of the permeability and multiphase flow behavior in
small-scale fractures comprising the tributary fracture zone

* Improving the efficiency of hydraulic fracturing through
production curve analysis

e Determination of key mechanisms controlling unconventional oil
and gas migration

* Development of tools to analyze production cures and thereby
enhance hydrocarbon production

Los Alamos National Laboratory 8/21/2018 | 18



Project Overview

Goals and Objectives

* Quantification of fracture-network permeabilities
—Use state-of-the-art facilities to measure and characterize permeability at reservoir
conditions

e Determine influence of reservoir stress conditions on fracture
permeability

—Fracture-permeability as a function of the conditions of fracture formation (i.e.,
depth) and as a function of changing stress conditions (potential effect of fracture

closure)

* Multiphase fluid flow processes
—"Use high P/T microfluidics system to directly observe and characterize multiphase
flow in fractures
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Organization Chart

(Project Lead)
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(Bill Carey, PI) (Hongwu Xu, PI)
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Gantt Chart
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