
PETRA NOVA Carbon Capture

August 2019

Carbon Capture, Utilization and Storage, and Oil and Gas Technologies Integrated Annual Review Meeting

Petra Nova Parish Holdings LLC

Commercial Structure

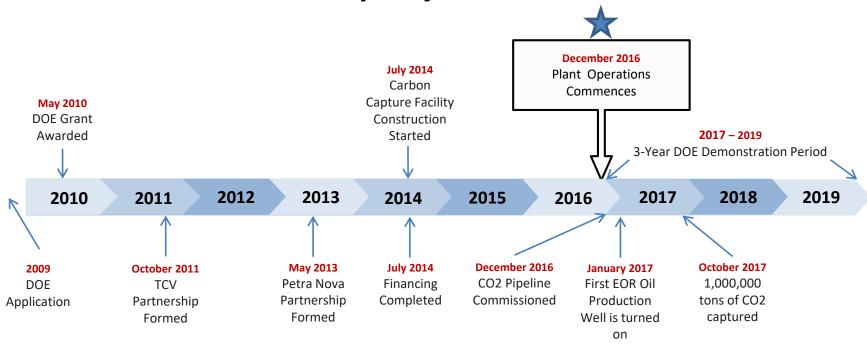
The Partners

 JXTG Holdings is a leading integrated energy, resources, and materials company

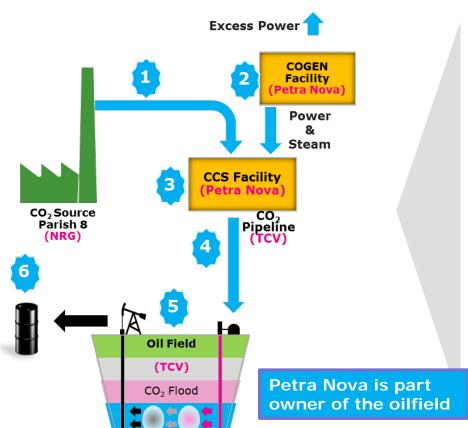
NRG Energy, Inc. is a large independent power company in the US

 Hilcorp Energy is one of the largest privately-held oil and natural gas E&P companies in the US

→ JBIC and NEXI are wholly-owned by the Japanese government.



US DOE awarded \$190 MM grant funded through the Clean Coal Power Initiative


Key Project Dates

Significant planning required from start to finish!

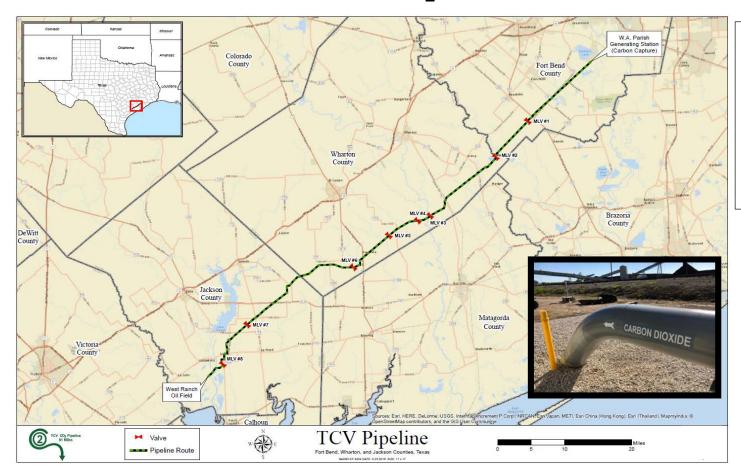
Project Systems

How it Works

- Divert the flue gas from NRG's WA Parish Unit 8
- Provide power and steam via dedicated COGEN facility, sell surplus power to grid
- 3. Process flue gas in a carbon capture system to strip out the CO₂
- Transport CO₂ to West Ranch Oil Field through 81 mile long CO₂ pipeline
- CO₂ Enhanced Oil Recovery operation to produce otherwise unrecoverable oil
- Transport and sell crude oil marketing, selling, and transporting the recovered oil

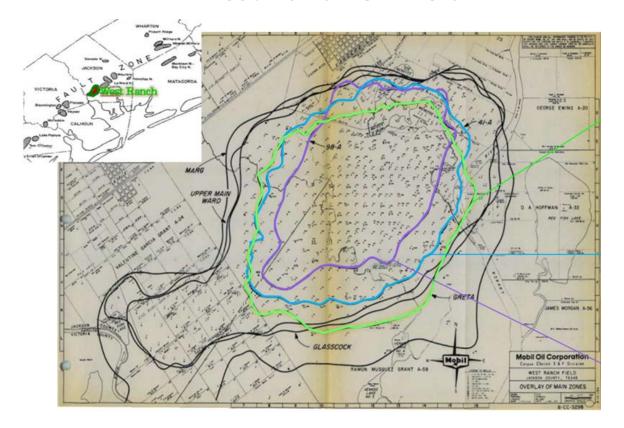
Petra Nova Overview

- Petra Nova uses a 240 MW equivalent slipstream of flue gas from NRG's 640 MW coal-fired power plant - W. A. Parish unit 8
- CO₂ accounts for ~13% of the flue gas
- Petra Nova captures >90% of the CO₂ from the processed flue gas
- When operating at 100%, Petra Nova captures 5,200 tons of CO₂ per day
- To date, approx. 3.3 million tons of CO₂ have been captured

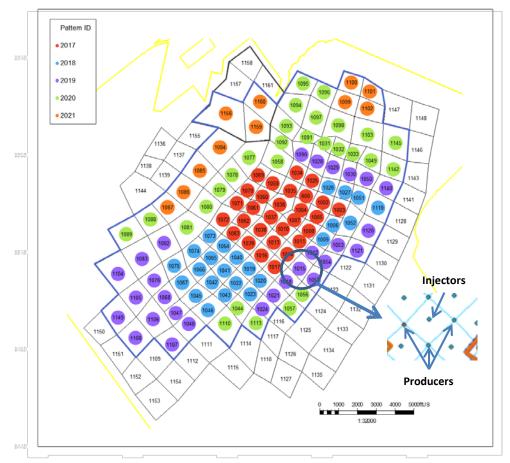

Carbon Capture System Site Layout

Cogeneration (steam & power)

CO₂ Pipeline


- 81 Miles
- ~160 landowners; no condemnation authority
- 12" diameter
- .330 wall pipe (.406 on HDDs)
- 8 Mainline Valves (MLVs)
- 1,900 psi at inlet; ~1,650 psi at delivery
- No intermediate compression

Flat, rural, and colocated with existing utilities


7

West Ranch Oil Field

Enhanced Oil Recovery Project

West Ranch Field Development

- Field is being flooded using a "5-spot" pattern (each injector surrounded by 4 producers)
- A comprehensive monitoring, verification, and accounting (MVA) plan is in place to track the flow of CO₂ and to insure that it is sequestered in the reservoir
- University of Texas Bureau of Economic Geology (BEG) developed the plan to sync with oilfield operations and manages the plan during the DOE 3-year demonstration period

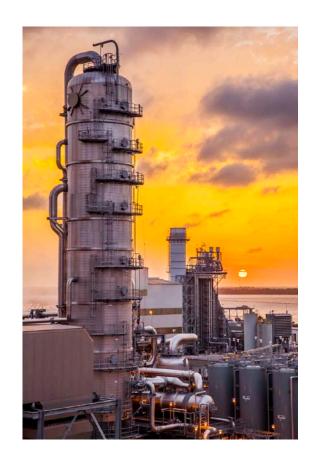
Key Components of the Petra Nova MVA Program

- Modeling development of a fluid flow simulation model using actual logging and production data
- 2. Mass Balance Accounting accounting for injected CO₂
- 3. **Pressure Monitoring –** monitoring pressure in 10 dedicated AZMI (above zone monitoring intervals) wells (5 each in two zones)
- 4. Fluid Sampling collection of pre-injection fluids (brine, gas, oil) in the injection and AZMI zones
- Groundwater Monitoring one year of baseline and periodic ongoing sampling of groundwater at several ground water wells
- 6. Soil Gas Monitoring characterization of soil gases at several sites
- 7. **Additional Monitoring** in addition to the BEG program, the oilfield operator is also monitoring surface level and down hole pressures

West Ranch Central Facility #1

West Ranch Field Central Facilities

- 2 central processing facilities to separate oil-CO₂-water
- Currently 5
 manifold sites to
 move process
 fluids
- All produced CO₂ and water is reinjected into the formation



Lessons Learned

Requirements for a successful CCUS project:

- ★ Technology evaluation and evolution
- + Engineering and design management
- ★ Location and pipeline development
- ★ Commercial structuring and CO₂ sales
- ❖ Interface/relationship with the oil field
- ★ Financing structure, including tax incentives, if available
- ♣ Government grant application and administration, if available
- Environmental study management
- Permitting and licensing
- ♣ EPC Selection, Contract Structure and Construction management
- ♣ Integrated Project Team communications and messaging
- Aligned Partners
- ♣ Operational experience engage early

PETRA NOVA Carbon Capture

Current Focus for NRG

- Optimization of the technology that we have in place with the Petra Nova project
 - "First-of-a-kind" project creates challenges not seen with conventional projects.
- Optimization of project economics
 - Project economics impacted by commodity prices of oil, gas, coal, and power
- Continue to develop operational expertise
 - ★ Limited industry-wide operations expertise
- Evaluating and optimizing on tax incentives for the current project, where possible
 - Regarding 45Q, NRG supports/applauds Congress action to continue advancing the development of CCS/CCUS projects across the nation

Thank You!

