Presentation at NETL Ammonia Combustion Technology Group Meeting, 12th Nov 2024

Acknowledgements: This work was partially supported by:

- Department of Energy SBIR program, award number DE-SC1870000
- Office of Naval Research (ONR), award number N00014-21-1-2571
- National Science Foundation (NSF), award number 2339518

Dynamic Stability and Emissions in Premixed CH₄/NH₃ Swirling Flames with Nanosecond Pulsed Discharges

Santosh Shanbhogue¹

Gómez del Campo³

Felipe

Carmen Guerra-Garcia

Ahmed

Ghoniem¹

¹Department of Mechanical Engineering, MiT, Cambridge, MA, USA ²Aeronautics and Astronautics, MiT, Cambridge MA, USA ³Specter Aerospace, Peabody, MA, USA

Background - I

Dynamic Stability of NH₃/air flames : Definitions

- Dynamic Stability:
 - Occurrence of large pressure pulsations in the combustion chamber
 - Most dangerous of these is when the peak amplitude is a few percent of the chamber pressure
- All things being equal, how does substituting $C_x H_y$ with NH_3 change characteristics of these oscillations
 - Can we link these to some flamelet characteristic or fuel chemistry/transport?
- How do we reduce/eliminate these oscillations?
 - (preferably in a way that affects the fuel chemistry/transport?)

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Background - I

Related: Dynamic Stability due to H₂ addition

DASPL (dB)

- Related question, that we have addressed before: ۲
 - How does switching from $C_x H_y$ to H_2 change • the dynamic stability of the combustor
- What changes: ۲

 $K_{ext}(s)$

Frequency amplitude

CHUSETTS INSTITUTE

 Point of onset 					
				130	0.4 0.6 Equivalence Ra
At stoichiometric conditions	NH ₃	CH ₄	H ₂		
T _{equil.} (K)	2075	2225	2400		
$S_u^o (^{cm}/_s)$	7	35	175		
$K_{ext}(s^{-1})$	~ 100	> 2200	> 30,000		

Background – II

The effects of NRPD on Flame Stability and Emissions

- Prior work by us and others have shown that NRPDs can improve flame stability, but only for CH₄/air or other hydrocarbon flames
- Studies have shown that NRPDs can reduce NO_x in NH_3 /air flames
- Can all the benefits of NRPDs be exploited for CH₄/NH₃/air flames? Improve stability and reduce NO_x?
 - This is a key motivation for the present work

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Experimental Setup I – RGD Combustor

Ref: Taamallah, Shanbhogue & Ghoniem, 2016, Comb. & Flame

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Fuel -	100% CH4	60%CH ₄ , 40%NH ₃	20%CH ₄ , 80%NH ₃
Equiv. Ratio↓			
0.75			
	M = IV, $\kappa_{ext} = 1395.61 \text{ s}^{-1}$	M = IV, $\kappa_{ext} = 638.51$ s ⁻¹	$M = \coprod_{\kappa_{ext}} \kappa_{ext} = 178.55 \text{ s}^{-1}$
0.7			
	$M = IV_{ext} \kappa_{ext} = 1085.4 \text{ s}^{-1}$	M = III, κ_{ext} = 500.66 s ⁻¹	$M = \underline{I}_{\star} \kappa_{ext} = 120.68 \text{ s}^{-1}$
0.66			
	M = IV, $\kappa_{ext} = 847.13 \text{ s}^{-1}$	M = II, κ_{ext} = 371.84 s ⁻¹	M = I, κ_{ext} = 76.981 s ⁻¹
0.64			Flame blew off
	M = III, κ_{ext} = 724.92 s ⁻¹	$M = II, \kappa_{ext} = 312.66 \text{ s}^{-1}$	
0.60			Flame blew off
	$M = \coprod_{\kappa_{ext}} \kappa_{ext} = 474.31 \text{ s}^{-1}$	$M = I$, $\kappa_{ext} = 204.51 \text{ s}^{-1}$	
0.56		Flame blew off	Flame blew off
	$M = 11, \kappa_{ext} = 299.77 \text{ s}^{-1}$		
0.54	$M = I, \kappa_{ext} = 237.39 \text{ s}^{-1}$	Flame blew off	Flame blew off

Results: Combustion Instabilities for different CH₄/NH₃ blends

As the percentage of NH_3 in increased, the oscillations are suppressed, and transitions delayed or gone

Scaling with flame time scale

- If the transitions and amplitudes as measured by SPL are a function of the Damköhler number
- Then should be scale as $(\frac{1}{\tau_{flame}})$
- *K_{ext}*: Extinction Strain Rate
 Computed using CHEMKIN
- $\frac{\alpha}{S_L^2}$: Based on thermal diffusivity and burning velocity
 - Computed using Cantera
- For appropriate flow time scales, see Taamallah, Shanbhogue & Ghoniem, 2016, Comb. & Flame

$$\tau_{flow} = \frac{1}{2\pi f_{ORZ}}$$

Experimental Setup I – RGD Combustor

Experimental Setup II – Specter injector

- 6 kW, premixed, non-preheated combustor at atmospheric pressure
 - Re ≈ 20,000
 - $U_{\infty} \approx 30 \text{ m/s}$
 - $CH_4 \& NH_3$ mixed well upstream of swirler
 - Entire setup \approx 4 m long
 - Emissions tap at 2.66 downstream of dump plane
- The quartz tube in the picture is about 75 mm in diameter
- The flow flows into the quartz tube via a 9.1 mm nozzle
 - Center body with sharp tip functions as the anode
 - Discharge gap is thus 4.55 mm

- Key difference between this combustor and the RGD combustor
 - Discharge gap is 4.55 mm vs. 12.7 mm
 - Pulse energy for actuation is < 10 mJ/pulse vs.

- NRP discharges generated using a TPS transient pulse generator (SSPG-20X-HP1)
- Typical FWHM pulse widths are about 12 ns in duration with a frequency of 9 kHz. Peak voltage, at the measurement location, is 6-9 kV
- Energy deposited in the discharge per pulse is 5-12 mJ
- Electrical waveforms measured using a single current shunt in the middle of a 10m coaxial cable
- Ref: C. Pavan, S. Rao, and C. Guerra-Garcia, "Tutorial: Electrical Measurements in Nanosecond Pulsed Plasma Reactors", J Phys D: Appl. Phys 2024 (https://doi.org/10.1088/1361-6463/ad73e5)

Flame Macrostructures

Equivalence Ratio	90% CH ₄ /10% NH ₃	20% CH ₄ /80% NH ₃
1.0		
0.9		

- Without plasma: Identical compact flames at a very broad range of equivalence ratios
 - Unlike many other studies no macrostructure transitions or very long flames
- With plasma: Clear anchored flame resembling the letter Y
 - For large amounts of NH₃, the flame is more distributed downstream, but still relatively compact (no tubular flames observed)

Effect of NRPD on Instability Suppression

Spectra for various conditions

- We measured instability amplitudes and frequencies at various equivalence ratios
 - The instability frequency depends on equivalence ratio
 - Why the combustor chooses one mode over other discussed in Hong, Shanbhogue, Speth & Ghoniem, 2013, Comb. & Flame
- For <u>all cases</u>, with plasma, the instability vanishes with at sufficiently high pulse energies
 - By this we mean the spectra reverts to broadband flow noise
 - Peak noise reduction $\approx 25 \text{ dB}$
 - This is a significant improvement compared to our previous work (J. Prop. Power, 2023) where we saw only 3 dB or so reduction (amplitude is halved due to NRPD's)

NRPD Characteristics During Instability Suppression

- A question of great interest is how much plasma power is required to suppress the instability
 - This is measured in the figure
 - For all conditions in the figure, the flame was that of a stoichiometric CH_4 /air mixture
- The plasma is turned on at t = 0 and stays on
 - Power measurements done only till 110 ms
 - Note that the instability dies out in a few milliseconds
 - At 69 W & above, the instability dies
 - The flame power is nearly 6 kW
- The required plasma power is 1-2% of the flame power
- The energy deposited doesn't remain constant but fluctuates due to the periodic motion of the flame, the "backward problem". See Pavan,...,Guerra-Garcia, Plas. Sour. Sci. & Tech. 2024.

Background - IV

NO_x emissions from NH_3 /air flames

- For conventional hydrocarbon fuels in gas-turbines, NO_x is in single digits, even without postcombustion emissions controls
 - This is even when there is substantial N₂ in the gasmixture (e.g. process gas)
- For NH₃, NO_x can easily reach 1000 ppm (in laboratory flames) without any post-combustion emissions controls

Fig. 7 Perfectly premixed NO_x measurements for high hydrogen fuels taken at P = 17 atm and $\tau = 33$ ms

Baseline: NOx emissions from hydrocarbon flames. Reproduced from York,..,Yilmaz, 2013, ASME TurboExpo

Fig. 7 – Concentrations of NO, NH_3 and H_2 for cylindrical liner with 200 mm liner length in the case of the swirl number of S = 0.736.

NOx emissions from laboratory scale NH₃/air flames. Reproduced from Hayakawa,..,Kobayashi 2017. Int J. H2 energy

Another key question is what kind of kinetic models and flamelet models can model NO_x from these combustors. Kinetic models that reproduce ignition delays and burning velocities are available in literature, but struggle with NO_x prediction.

Effect of NRPD on NO_x Emissions

CH₄/air flames

Basic question: What kind of flamelet model is appropriate for NO_x predictions in CH_4 /air flames (without NRPD)

- Blue shaded area shows the NO_x emissions for strained flames
 - Lower limit unstrained flame
 - Upper limit flame at extinction strain rate
- Calculations done using GRI 3.0
 - There are more comprehensive and validated mechanisms such as NUIGMech1.3, but these are computationally expensive
- Measurements indicate that the emissions in this combustor are consistent with a strained flame

- With NPRD the NO_x emissions jump to a constant value, apparently independent of the equivalence ratio
- The emissions are dependent on the pulse energy deposited in the flow
- The highest pulse energies guarantee complete suppression but produce more NO_x
- Optimal pulse energy a balance between allowable instability amplitude and excess NO_x

Effect of NRPD on NO_x Emissions

CH₄/NH₃/air flames

- We were able to test the effect of NPRD on NO_x for just one condition 80% NH₃ and 20% CH_4 + air
 - For higher ammonia fractions, we couldn't stabilize the flame at these velocities
 - For lower ammonia fractions, the NO_x values exceed 5000 ppm, which is the detection limit of of our analyzer.
- But NRPD <u>reduces NO_x</u> by nearly 200 ppm at these conditions
- Just like for CH₄/air flames, we attempted to model the emissions using different kinetic model, but none of these match our experimental observations

Conclusions

Dynamic Stability:

- What does ammonia addition do to a combustor nominally fired with hydrocarbons:
 - It makes it more stable, -- narrow window of pulsations
 - This is the opposite of what addition of hydrogen does to the combustor, i.e. makes it more unstable

 wider window of conditions where pulsations occur
 - Data scales with $Da = \tau_{flow} K_{ext}$ or $\tau_{flow} \frac{S_L^2}{a}$ suggesting a direct link to chemistry/transport at the flamelet level

Effect of NRPD (plasmas) on dynamic stability:

- Plasmas can suppress instabilities by up to 25 dB across a wide range of conditions
- Electrode design/arrangement is important here we found success with a pin-to-ring discharge

Effect of of NRPD on NO_x

- For CH_4 /air flames, plasmas increase NO_x at least at the levels required to suppress combustion oscillations
- For $CH_4/NH_3/air$ flames, plasmas reduce NO_X

Presentation at NETL Ammonia Combustion Technology Group Meeting, 12th Nov 2024

Questions?

Feel free to email us: santosh1@mit.edu

Acknowledgements: This work was partially supported by:

- Department of Energy SBIR program, award number DE-SC1870000
- Office of Naval Research (ONR), award number N00014-21-1-2571
- National Science Foundation (NSF), award number 2339518

Dynamic Stability and Emissions in Premixed CH₄/NH₃ Swirling Flames with Nanosecond Pulsed Discharges

Santosh Shanbhogue¹ (presenter)

Felipe

Carmen Guerra-Garcia

Gómez del Campo³

Ahmed Ghoniem¹

¹Department of Mechanical Engineering, MiT, Cambridge, MA, USA ²Aeronautics and Astronautics, MiT, Cambridge MA, USA ³Specter Aerospace, Peabody, MA, USA

Detailed in 2023, Shanbhogue,...,Guerra-Garcia, Ghoniem, JPP

Modeling for active control

- Feedback models and some feedforward models need a reduced order model of the system for choosing the right controller
 - We've combined the thermoacoustic system into a single model
- The plasma is actually triggered with a frequency f this is the input variable
 - 1 < f(kHz) < 9
 - We set the voltage to the highest value, say 20 kV, which sets the energy per pulse

Open-loop control

- In this experiment, the operator sat down and adjusted the knob between 1000Pa and 3000 Pa
- The model computes the PRF and sends it to the plasma system
- Not a perfect match
 - This will happen only when there is feedback

