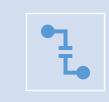

Ammonia Use in Medium/Heavy-Duty Internal Combustion Applications

Cosmin Dumitrescu

Mechanical, Materials, and Aerospace Engineering West Virginia University

NETL Ammonia Combustion Technical Working Group Meeting

November 12, 2024


Why Use Ammonia (NH₃) for Power Generation

Carbon-Free Combustion: NH_3 combustion produces nitrogen (N_2) and water (H_2O), and no carbon dioxide (CO_2) emissions. Hence, a viable option for decarbonizing power generation.

High Energy Density: NH_3 has a relatively high energy density compared to some other alternative fuels, making it efficient for storage and transport.

Existing Infrastructure: NH₃ is already widely used in the chemical and fertilizer industries, with established global production, storage, and transport infrastructure that can be adapted for energy use.

Why Use Ammonia (NH₃) for Power Generation

Versatile Production Pathways: NH_3 from green hydrogen (H₂; via electrolysis powered by renewable energy) and N_2 from the air, enabling a fully renewable and sustainable energy cycle.

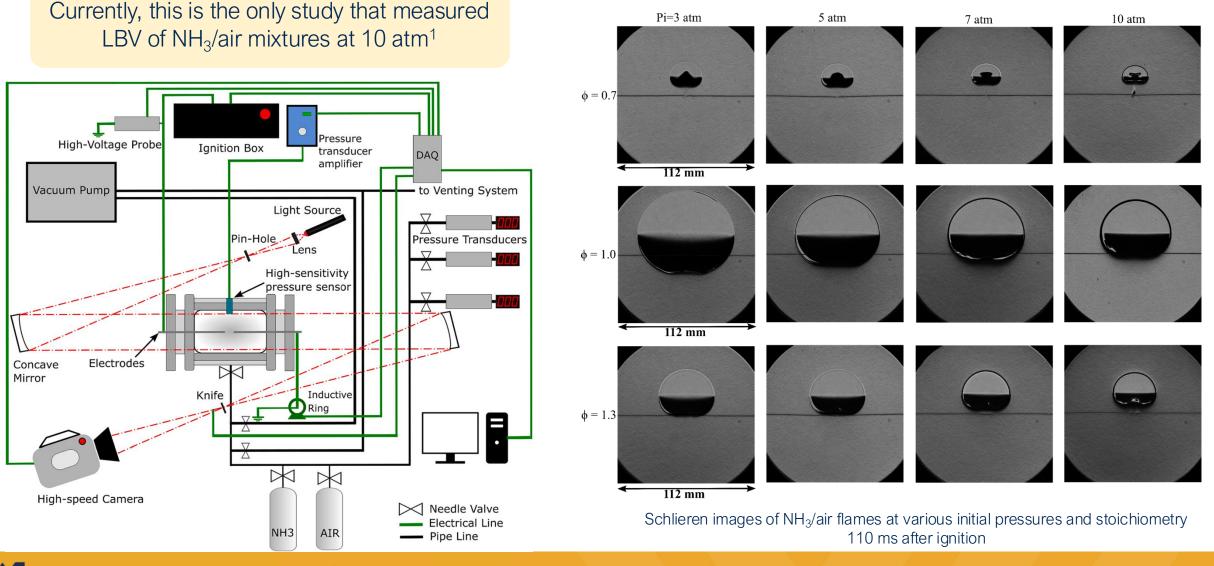
Potential for Co-Firing: NH_3 can be co-fired with other fuels (natural gas, coal) in existing power plants. Hence, NH_3 provides a transitional step toward decarbonization that doesn't require an entirely new infrastructure.

Global Energy Carrier: NH_3 easier to liquefy and store compared to H_2 , which reduces logistical challenges. Therefore, NH_3 can serve as an energy carrier for H_2 , facilitating long-distance energy trade.

Challenges When Using NH₃ as Fuel

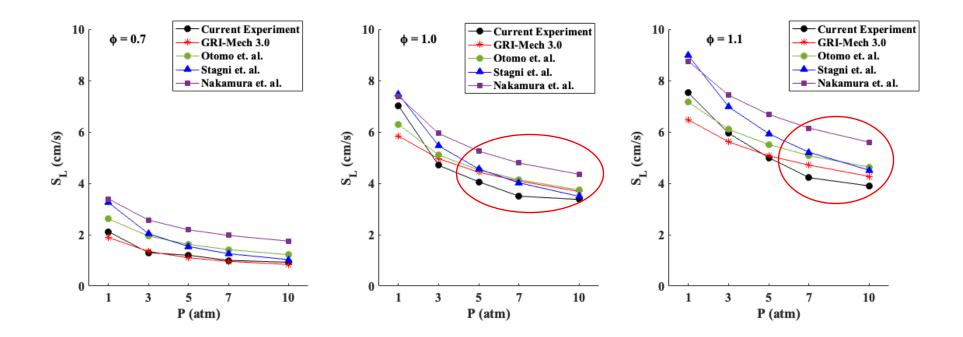
Toxicity: NH₃ is toxic and poses safety risks during handling and transport.

Combustion: NH₃ has limited flammability range, elevated ignition temperature, elevated heat of vaporization, lower laminar flame speed and lower energy output compared to traditional fuels.



Emissions: NH_3 combustion produce nitrogen oxides (NO_x) and nitrous oxide (N_2O ; high global warming potential), therefore requiring advanced emission control technologies. Currently, there are no binding regulations for NH_3 emissions if NH_3 is used as a fuel.

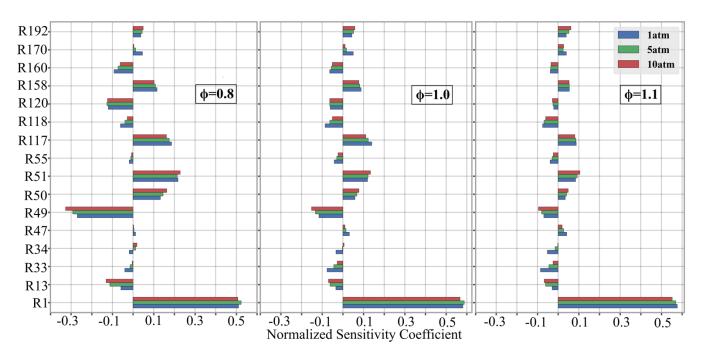
Atmospheric Pollution: NH_3 is a key precursor for the formation of atmospheric secondary inorganic particles, such as ammonium nitrate and sulfate. Limited information on the possible effect on the atmospheric concentration of gaseous NH_3 if NH_3 is used as a fuel.


Laminar Burning Velocity of NH₃/Air Mixtures at High Pressures

West Virginia University.

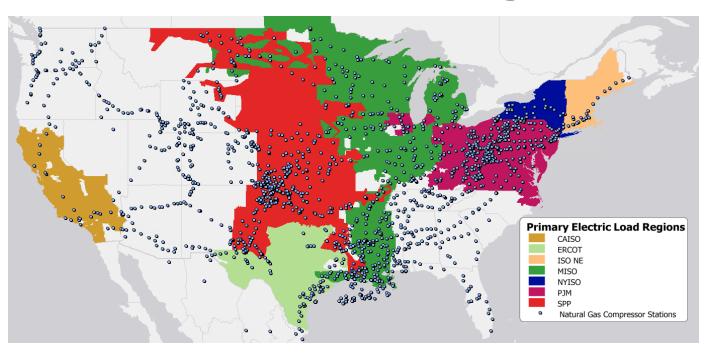
¹Alvarez, L. F., Shaffer, J., Dumitrescu, C. E., and Askari, O. Fuel 363, p. 130986, 2024.

Laminar Burning Velocity of NH₃/Air Mixtures at High Pressures



- LBV measurements were compared with existing detailed reaction mechanisms
- Numerical simulations for higher pressure suggested higher LBV values at equivalence ratio ϕ = 1.0 and ϕ = 1.1

estVirginiaUniversity.


Laminar Burning Velocity of NH₃/Air Mixtures at High Pressures

Number	Reactions
R1	$\mathrm{H} + \mathrm{O}_2 \Leftrightarrow \mathrm{O} + \mathrm{OH}$
R13	$H + O_2 (+M) \Leftrightarrow HO_2 (+M)$
R33	$H + NH_2 \Leftrightarrow H_2 + NH$
R34	$NH_2 + O \Leftrightarrow H + HNO$
R47	$N + NH_2 \Leftrightarrow 2H + N_2$
R49*	$NH_2 + NO \Leftrightarrow H_2O + N_2$
R50*	$NH_2 + NO \Leftrightarrow H_2O + N_2$
R51	$NH_2 + NO \Leftrightarrow NNH + OH$
R55	$\mathrm{H} + \mathrm{NH} \Leftrightarrow \mathrm{H_2} + \mathrm{N}$
R117	$H + NO(+M) \Leftrightarrow HNO(+M)$
R118	$H + HNO \Leftrightarrow H_2 + NO$
R120	$HNO + OH \Leftrightarrow H_2O + NO$
R158	$N_2O\left(+M\right) \Leftrightarrow N_2 + O\left(+M\right)$
R160	$H + N_2 O \Leftrightarrow N_2 + O H$
R170	$NH + NH_2 \Leftrightarrow H + N_2H_2$
R192	$N_2H_2 \Leftrightarrow H + NNH$

- Sensitivity analysis to understand the chemical reactions that impact the most the LBV of NH₃/air flames
- Competing reactions have a substantial impact on the oxidation pathway, with experimental conditions determining which reaction is dominant (i.e., which reaction promotes or inhibits the LBV)

NH₃ Can Replace Diesel or Natural Gas in Land-Based Off-Road IC Engine Applications

The majority of gas pipeline infrastructure in the U.S. will continue to rely on existing pipeline and compression capacity for the next several decades. Extra 8,000 MW needed if converted to electricity.¹

Convert natural gas pipeline diesel-fired or natural gas-fired compression to ammonia-fired compression.

¹ ICF Resources, 2024, https://ingaa.org/wp-content/uploads/2024/01/Assessment-of-Electric-Drive-Compressor-Conversion1.pdf

WestVirginiaUniversity.

NH₃ Use in Heavy-Duty CI Engines

Guidance on the safe design and operation of ammonia systems depends on jurisdiction

International design and maintenance rules and standards are needed.

NH₃ dissolves in and/or react with engine oil.

How does it affect lubricant degradation? Are there potential health risks from exposure to contaminated oil during engine maintenance or when handling used oil?

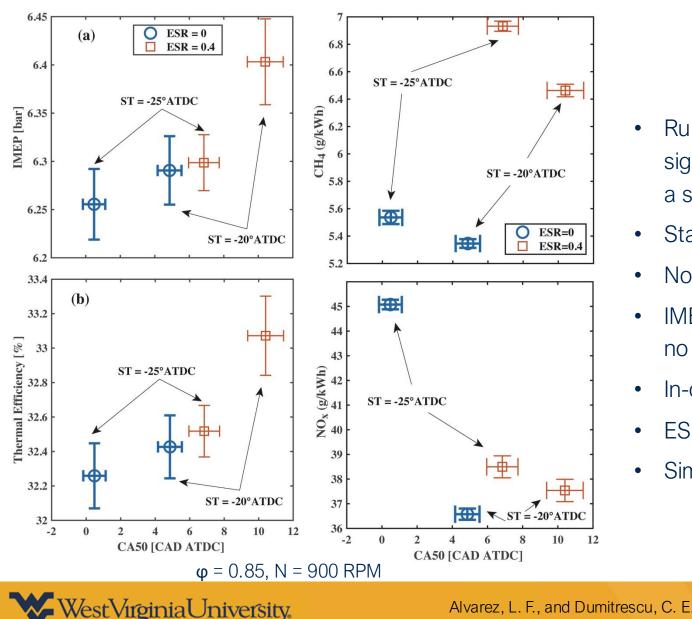
High-temperature corrosion of engine components exposed to NH₃

Do we need to change seals, bearings, etc.?

NH₃ Use in Heavy-Duty CI Engine Converted to SI

estVirginiaUniversity.

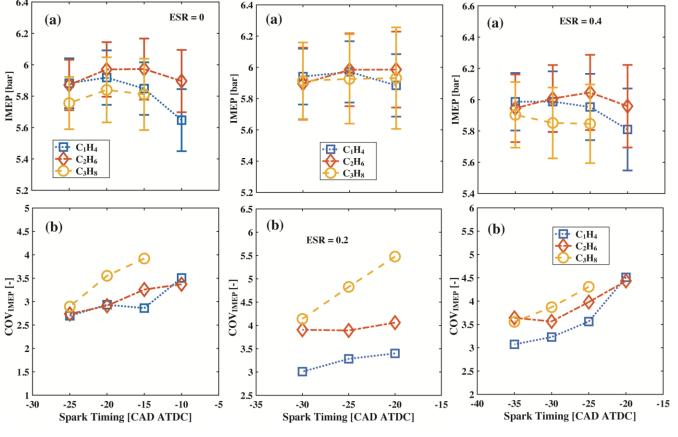
Displaced volume	1997 cc
Stroke	150 mm
Bore	130.2 mm
Connecting Rod	275 mm
Compression ratio	13.3:1
Number of Valves	2
Exhaust Valve Open	126 CAD ATDC
Exhaust Valve Close	10 CAD ATDC
Inlet Valve Open	12 CAD BTDC
Inlet Valve Close	140 CAD BTDC


Research on this engine platform is focused on lean operation

- Previous studies using NG as fuel serve as baseline
- Lower *dP/dt* means higher loads are possible

No optimization compared to previous studies except the addition of a better ignition system

Partially Replace Methane with NH₃


SAE Technical Paper 2024-01-2371, 2024

 $ESR = \frac{\dot{m}_{NH_3}LHV_{NH_3}}{\dot{m}_{CH_4}LHV_{CH_4} + \dot{m}_{NH_3}LHV_{NH_3}}$

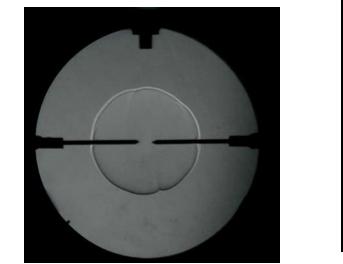
- Run the engine at the maximum possible ESR without any significant changes in engine control strategy other than just a spark timing adjustment
- Stable combustion
- No penalty in IMEP when NH₃ replaced CH₄
- IMEP_{max} at same spark timing (ST) for both ESR cases (i.e., no need for changes in the engine control strategy).
- In-cylinder turbulence offset lower LBV of NH₃
- ESR = 0.4 had more optimum combustion phasing
- Similar NO_x emissions

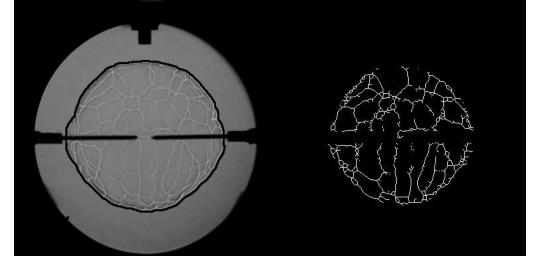
Partially Replace Methane, Ethane, and Propane with NH₃

φ = 0.8, N = 1,000 RPM

*Irginia*University.

 $ESR = \frac{\dot{m}_{NH_3}LHV_{NH_3}}{\dot{m}_{C_xH_y}LHV_{C_xH_y} + \dot{m}_{NH_3}LHV_{NH_3}}$

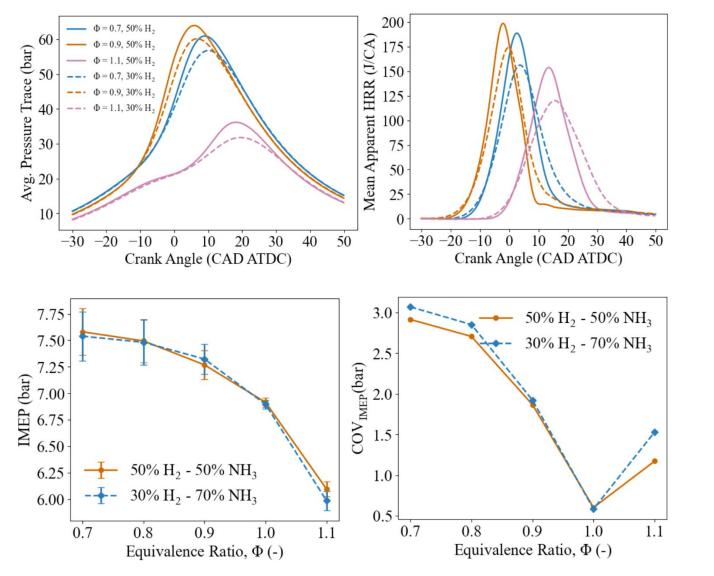

- Higher ESR increased COV_{IMEP} but stable combustion
- No penalty in IMEP when NH_3 replaced NG components
- IMEP values were similar for different ST
- The increase in ESR lowered initial flame propagation rate but the combustion phasing was better
- The superposition of the IMEP error bars for all the three fuels at all the ESR conditions showed the engine capability to operate with a higher proportion of ethane or propane in the natural gas.


Alvarez, L. F., Askari, O., and Dumitrescu, C. E., Proc. ASME ICE2024, Paper # ICEF2024-140567. San Antonio, TX, October 20-23, 2024.

NH₃/H₂ Blends – Effect of H₂ Concentration - CVCC

Wrinkled vs smooth spherical flames

rginiaUniversity.



- Flame wrinkling can affect combustion, including the burning velocity, in turn affecting performance and emissions.
- Higher H₂ blend concentrations increase L_{crack}. The increase was faster and earlier (i.e., at smaller radii), which accelerated crack length growth.
- The maximum number of cracks become increasingly smaller at higher ϕ , even at higher blend fractions of H₂.
- The tendency of more instabilities at higher H₂ fractions and lower φ is consistent with how pure H₂-air spherical flames behave.

Engine

J.H. Mack, B. Nawaz, N. Nasim, S. Das, L. Alvarez, C. Dumitrescu,

Poster Session 2, THIESEL, September 12, 2024.

VirginiaUniversity.

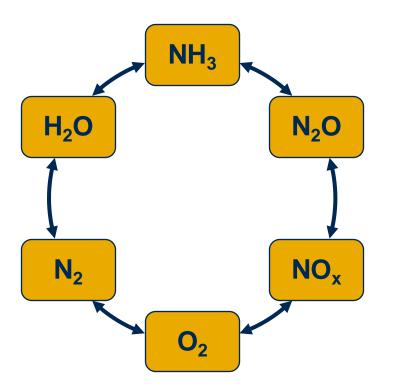
- Higher H₂ percentage increased peak in-cylinder pressure and heat release in the SI engine.
- Peak in-cylinder pressures became higher as φ increased.
- Higher H₂ percentage reduced the burn duration (degrees of crank angle between 10% and 90% of cumulative heat release) due to the higher burning velocity of H₂ compared to NH₃.
- However, there was no indication that any of these metrics were due to increased flame wrinkling (which would have become apparent in COV_{IMEP} changes for different blend composition).

Research in Progress at West Virginia University

Successfully run 100% neat NH₃ without any engine optimization (look for published paper(s) soon)

IMEP for 100% neat NH₃ was comparable to NG operation as same conditions.

Highest IMEP was obtained at lean operation.


NH₃ is sticky and volatile. It is not easy to measure engine-out emissions and NH₃ leaks must be monitored.

NH₃ emissions in real exhaust gas can reach 1 vol% (10,000 ppm) or more.

Effect of equivalence ratio on NH₃, NO_x, and N₂O emissions is not straightforward (see next slide).

Aftertreatment Technologies for NH3 IC Engines¹

 $4NH_3+3O_2\rightarrow 2N_2+6H_2O$

- Unique catalyst operating conditions present significant challenges to their direct application in NH₃ IC engines. Achieving efficient low-temperature conversion of N₂O (around 350°C) within the complex NO_x, N₂O, NH₃, O₂, and H₂O exhaust gas mixture is particularly demanding.
- Inhibitory effects of H₂O, O₂, and the optimal NH₃ feed add to emissions conversion complexity. Additionally, the high levels of H₂O vapor in NH₃-engine exhaust increase the hydrothermal aging of the catalyst, adversely impacting its long-term performance.
- NH_3 also oxidizes to N_2O and NO:

 $2NH_3 + 2O_2 \rightarrow N_2O + 3H_2O$ $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$

• Noble metals aggravate N₂O emissions.

1Cano-Blanco DC., Elsener M., D'Alessandri J., Peitz D., Ferri D., Kröcher O., The Journal of Ammonia Energy 02 (2024) 064–072

WestVirginiaUniversity.

Thank you!

Questions?

