

Investigation of Ammonia for Combustion Turbines (IACT) - Summary DE-FE0032172

John Vega (GTI Energy), Wenting Sun (GA Tech)

Andrew O'Connell (DOE, NETL)

October 31st, 2023

Investigation of Ammonia for Combustion Turbines (IACT)

 Goal - develop advanced combustor technology to utilize ammonia as a zero-carbon fuel for power generation applying an iterative physics, computational, and experimental approach resulting in a pilot combustor design validated through tests

CENTRAL FLORIDA

- Testing Scaled Combustor
 - Design using updated mechanism/ validated model
 - -NOX Target: 20 ppm at 15% O₂
 - -High combustion efficiency
 - Stable flame (no blowoff)
- Challenges with ammonia
 - -Safety considerations with ammonia
 - -Ammonia ignition and flameholding
 - NOx generation

IACT Plan & Key Roles Schedule: 9/2022-1/2026; Funding: \$4.2M

IACT Project Flow

• Literature search to understand SOA and identify knowledge gaps

-Define test conditions to fill gaps

• Fundamental NH₃ & NH₃+H₂ combustion physics testing

-Generate improved detailed and reduced kinetics

• Develop computational CFD design tool implementing updated mechanisms

-Apply combustion physics knowledge and design tool

• Design and test scaled combustor

70/30 NH₃/H₂ IDTs Also Pure Ammonia and 50/50 Mix

- At 5 bar and 10 bar, ignition order follows rich<lean<stoichiometric. However, at lower temperatures, all mixtures ignite nearly at same time.
- At 20 bar, lean and rich mixtures ignite slower than stoichiometric mixtures.
- IDT data new and will be utilized to develop a validated ammonia/hydrogen chemical kinetic model for gas turbine operating conditions

NO Cross Sections

- For measuring species time histories, individual species absorption needs to be characterized.
- Plan to measure NO, NO2, NH₃ and H₂O species time histories during NH₃/H₂ combustion at 5, 10 and 20 bar.
- NO absorption characterization results are shown below:

- NO absorption cross-section is found to decrease with increase in temperature.
- NO absorption cross-section is found to decrease with pressure.
- A linear fit was developed at 5, 10 and 20 bar to fit experimental data.

Flame speed measurements - Test matrix

• Conduct flame speed measurements to acquire flame speed data at 10 and 20 bar for pure ammonia and ammonia/hydrogen blends

	NH3 in fuel (%)	Oxidant ¹					Temp.	Pressures
Mixture		0 ₂	N ₂	Ar	He	Phi	(К)	(atm)
H ₂ -NH ₃	50	1	1	0	3	07 – 1.2	296	10
	70	1	1	0	3			
	100	1	2	0	1			
H ₂ -NH ₃	50	2	1	0	3			20
	70	2	1	0	3			
	100	2	1	0	3			

1. Oxidant ratio will be determined during experiments to get laminar flame speed.

• Utilize shock tube IDTs, speciation and flame speed experimental data to develop/improve chemical kinetic model for ammonia/hydrogen blends

Hencken Burner Test Setup

- Investigation of NH₂/NH laser-induced fluorescence (LIF)
 - Pure ammonia-air cases, O_2 enriched air (50% $O_2/50\%$ N_2) to help stabilize flame
 - Models seem to predict NH₂ trend vs ER well
 - NH trend vs ER is noticeably different
 - -Work in progress
- New CAI Gas Analyzer commissioned and will measure NO, NO₂ N₂O, and NH₃ at various equivalence ratios

Water cooled Sample Line

IACT | NETL Working Group Briefing | November 7th, 2023 8

Theoretical Minimum NOx for Ammonia Combustion

100

0.6

0.8

- A useful benchmark: what is the theoretical minimum possible NOx emission from ammonia combustion?
 - Not simulating a specific combustor, but rather what is possible with technology development
- Reactor network modeling 1.0bar (kinetic model from Mei et al. 5.0bar 10.0bar 2019) 15.0bar 10³ Fuel 20.0bar Perfect Main Stage NO (ppm, 15% O2 dry) (1-D flame) Mixer Air • Acceptable NO_{x} (O(10) ppm) Main Stage Products 10² possible Combusto – Rich front end, relaxation Products Perfect Second Stage Secondary Air (1-D flame) Mixer zone, lean zone 10¹ – i.e., more than just RQL Chemical equilibrium

1.0

Equivalence Ratio

1.2

Schematic of staged combustor reactor network model

Gubbi, S., Cole, R., Emerson, B., Noble, D., Steele, R., Sun, W., & Lieuwen, T. (2023). Air Quality Implications of Using Ammonia as a Renewable Fuel: How Low Can NO x Emissions Go?. ACS Energy Letters, 8, 4421-4426.

1.6

1.4

Optimized NO Emissions

- "Unrelaxed" NO dominates, manage by:
 - Increasing pressure (reduces equilibrium NO, increases relaxation rates)
 - Increasing temperature (increasing relaxation rates)
 - Increasing residence time
- Sensitivities are flipped for current DLN technologies!
- Theoretically, it is possible to be EPA compliant without SCR for ammonia combustion

IACT | NETL Working Group Briefing | November 7th, 202310

Atmospheric/Pressurized Tests Staging Tests

- Design for atmospheric and pressurized ammonia testing is complete
 - -Tests will share the burner
- Experiments will investigate flame stability, blow-off, and emissions
 - Various swirl configurations
- Atmospheric tests will characterize the emissions profiles in the primary zone at various residence times
 - Investigate the NO relaxation vs.
 theoretical minimum NOx calculations

Atmospheric/Pressurized Tests Staging Tests

- Burner manufactured, passed safety review, shakedown, and first fire
- Planning atmospheric and 6 bar tests

Modular Swirler Burner (Swirl numbers 1.1, 0.7, 0.4)

Scaled Combustor Test Planning

• 20 bar experiments planned for 2024

Modeling Upgrades for Turbulent Premixed Flames

GCRAFT Tech GTI ENERGY

- CRAFT Tech completed code development related to Thickened Flame Model (TFM) implementation in CRUNCH CFD
- TFM: Well-established turbulent combustion model for application to premixed flows using finite-rate chemistry
 - "Flame front" artificially thickened to be properly resolved locally on computational grid
 - Effects of turbulent flame interactions and flame stretch included by modifying flame speed of thickened flame front
- Initial TFM evaluation complete (operation/robustness):
 –2-D Laminar freely-propagating flame
 - -2-D Tohoku University/AIST configuration
- Application to GA Tech test configuration in progress
- Leveraging on MTS-FPV tabulated chemistry capabilities to reduce computation cost and turn-around time of simulations

Modeling of GA Tech Test Configuration

- Completed calculation setup on HPC systems:
 - Leveraged on periodicity: 45 degree wedge (one vane)
 - Used placeholder chemistry model
- Established computationally **efficient** procedure for steady-state solution:
 - -Non-reacting swirl flowfield with **FPV** approach
 - Ignition in combustor via FPV table lookup (detailed species mapping and temperature field initialization)
 - Reacting flowfield with TFM approach
- Next: Test planning calculations

Velocity vectors

- Swirl number of 1.1
- Stoichiometric NH₃-air mixture (premixed) at 1 atm pressure

Summary/Next Steps

- Selected for 41 month, \$4.2M project to advance NH3 combustion technology
 - -Ammonia is an alternative low-carbon energy carrier
- Completed detailed Literature Review and analyses indicating a preferred path forward
- Ammonia combustion physics testing is ongoing (UCF) over a range of relevant gas turbine conditions to fill in high pressure data

CENTRAL ELORIDA

- Hencken Burner and staged fuel tests ongoing (GTRC)
- Initial CFD model updates ongoing and analysis of configurations ongoing
- Ongoing preparations for higher pressure Scaled Combustor tests at GTRC
- Thanks to DOE NETL for supporting this work

