UTSR AND ADVANCED TURBINES PROJECT REVIEW MEETING 2023

AMMONIA FUEL PRECONDITIONER FOR GAS TURBINES

SREENATH GUPTA, SHASHIKANT AITHAL

Principal Research Engr. TAPS & CPS Divisions Argonne National Lab

October 31, 2023

TRISTAN SHAHIN, ROHAN GEJJI PROF. ROBERT LUCHT

PROF. CARSON D. SLABAUGH Dept. of Mechanical Engineering PURDUE University

TIM WEATHERS ASHVIN HOSANGADI CRAFT-TECH

ACKNOWLEDGEMENTS DOE-FECM

- Purdue University, "Investigation of Flame Structure for Hydrogen Gas Turbine Combustion," UTSR Project FE0032074
- Argonne national Laboratory, "Ammonia fuel preconditioner for gas turbines," FWP 38668.1
- Generous support of the computing resources by Laboratory Computing Resource Center (LCRC) at Argonne National Laboratory

POSITIVES

- Well developed NH₃ synthesis process
 - Haber-Bosch process
- Easy storage & transportation
 8 bar, 20°C, liquid
- High Hydrogen content – 17.7 wt%, 108 gH₂/Liter
- No carbon emissions

NEGATIVES

Toxic!!!

- But is used extensively for agricultural purposes
- High NO_x emissions
 200 to 2000 ppmv typical
- N₂O emissions
 Has GWP of 273
- NH₃ slip in exhaust

and...

NH₃-AIR MIXTURES HAVE EXTREMELY LOW FLAME SPEEDS

Solar model T-350 engine (Solar, *Final Technical Report*, DA-44-009-AMC-824, 1968)

- NH₃-air combustion is difficult because the laminar burning velocity is much lower than that of conventional hydrocarbon fuels.
- In 1967, Pratt examined an NH₃-fired gas-turbine combustor, and concluded that combustion efficiencies were unacceptably low.
- Verkamp showed that the pre-cracking of NH₃ and the additives improved the flame stability
- Because of those difficulties, the research and development of NH₃-fueled gas turbines were abandoned, and it has not been retried until recently.

OUR GOAL

Design and develop a scalable, low-cost, low-power, fuel preconditioning system that enables use of Ammonia in stationary gas turbines with minimal changes to turbine hardware.

Implied targets

- Efficiency ~ 40% simple cycle
- NO_x < 15 ppv (15% O₂)
- Acceptable combustion stability

FUEL PRECONDITIONING SYSTEM

Aim is to have minimal/no changes to combustion hardware

Year-1

Phase1: Low-T Dissociation Strategy - Low-T catalyst

Phase2: COMBUSTOR SYS. DEV. - CFD Study

Year-2

Phase3: Fuel Preconditioner design & build Year-3

Phase4: Demonstration in 1MW Combustor

- Fueling infrastructure
- Testbed prep.
- Demonstration tests

PHASE-1: LOW-T DISSOCIATION STRATEGY - LOW-T CATALYST

A TRADITIONAL AMMONIA CRACKER

Mainly used for metal heat treating applications

LOW-TEMPERATURE, COST-EFFECTIVE, DURABLE CATALYST

Producing Hydrogen from Ammonia Using State-Of-The-Art Calcium-Supported Nickel Catalyst

PHASE-2: COMBUSTION SYSTEM DEV. - CFD

PURDUE'S COMRAD COMBUSTOR IS BEING USED AS THE TEST PLATFORM

Purdue's COMRAD Combustor

Max. $P_3 = 40$ bar Max. $T_3 = 760$ °C Max. Air flow = 3.6 kg/s Thermal power density ~15 MW/m²/bar) Water cooled test article

Gas cooled windows

A variety of test instrumentation

Purdue 1 MW combus tor

Kulite WCT12M-35/70BARA 1 MHz Sampling

MULTI-STAGE, MULTI-TUBE MICROMIXING (M³) INJECTOR

Schematic representation of the M³ injector

EXPERIMENTAL & COMPUTATIONAL TEST MATRIX

- Initial fuel fraction (*X*) sweep from 0.5 to 1.0
- Ammonia decomposition efficiency (η) sweep from 0.4 to 1.0
 - Rate of ignition delay increase requires unreasonable combustor lengths at $\eta < 0.4$
- Equivalence ratio determined at a fixed adiabatic flame temperature of 1980 K (DOE target for 65% combined cycle efficiency GTs)

$$X\left[\eta\left(\frac{3}{2}H_{2}+\frac{1}{2}N_{2}\right)+(1-\eta)NH_{3}\right]+(1-X)NG$$

Fluid	Х	η	$m_{max} [kg/s]$	P _{bulk,min} [bar
H_2	1.0	1.0	0.03	55
N_2	1.0	1.0	0.13	47
NG	0.0	N/A	0.04	47
NH_3	1.0	0.4	0.09	N/A
Air	N/A	N/A	2.2	62

Premixed laminar flame speed (a) and variation in equivalence ratio for an adiabatic flame temperature of 1705 °C (3100 °F).

Our interest

Argonne 🧲

CFD EVALUATIONS

All simulations were performed using CRUNCH-CFD by CRAFT-Tech.

Task-1

Non-reacting flow evaluation of micromixing arrangement

- NH₃ crossjet in air
- H₂/N₂ crossjet in air
- Task-2

(Natural Gas - air) reacting flows for experimental validation

Task-3

 $(NH_3 - H_2/N_2 - air)$ reacting flows

			Task 1		Task 2	Task 3		
			Case1	Case2	Natural Gas	Ammonia1	Ammonia2	Ammonia3
	Fuel Composition		100% NH3	100% H2	NG/H2/N2 mix	NH3/H2/N2 mix	NH3/H2/N2 mix	NH3/H2/N2 mix
NH3 @ 305.4K	Fuel Inlet Mass Flow1	kg/s	0.00207	0	0	0.023638	0.01970	0.01576
NG @ 294.3K	Fuel Inlet Mass Flow2	kg/s	0	0	0.010	0	0	0
H2 @ 294.3K	Fuel Inlet Mass Flow3	kg/s	0	0.00037	0.002	0.00280	0.00350	0.00420
N2 @ 294.3K	Fuel Inlet Mass Flow4	kg/s	0	0.00171	0.008	0.01296	0.01620	0.01944
	Oxidizer Inlet Mass Flow	kg/s	0.0239	0.0239	0.454	0.454	0.454	0.454
	Oxidizer Inlet Temp.	К	755.4	755.4	755.4	755.4	755.4	755.4
	Exit Back Pressure	MPa	1.034	1.034	1.034	1.034	1.034	Argonne 📥

TASK-1: NONREACTING FLOW MICROMIXING

- Geometry: a single injector tube
- Steady state RANS cold flow (non-reacting) simulation calculations:
 - 1. Case 1: Pure NH₃ with air
 - 2. Case 2: H_2/N_2 mixture with air

TASK-1 SIMULATION OVERVIEW

Inputs:

- Non-reacting multi component simulation
- Steady-state
- k-ε turbulence model with wall function
- Grid:
 - Hybrid unstructured mesh
 - ➤ ~900,000 cells
 - Significant resolution required near injection ports
 - Multiple grid iterations were required to accurately resolve jet and obtain good mass flow convergence

TASK-1: NH3 INJECTION

TASK-1: H₂/N₂ INJECTION

TASK-2: COMBUSTING SIMULATIONS OF (NG/H₂ /N₂) MIXTURE IN AIR Validation by experimental results from Purdue

- Geometry: 19 fuel injection pipes and a combustion chamber
- Steady state RANS reacting flow simulation calculations

Chemical reaction mechanism: 25 species and 142 reactions

TASK 2: GRID OVERVIEW

• Grid features:

- Hybrid unstructured mesh
- ➤ 11 million cells
- Significant resolution required near injection holes
- High resolution near posts required to resolve flame shape and obtain better numerical stability
- Multiple grid iterations were required to accurately resolve flame and increase numerical stability

TEMPERATURE PLOT

TEMPERATURE ISOVOLUME > 1900 K

Unmixedness in H2 (shown later) causes high temperature only above/below injection pipes

VELOCITY VECTORS: RECIRCULATION ZONE VISUALIZATION

EQUIVALENCE RATIO PLOT

EQUIVALENCE RATIO ISOVOLUME > 0.5

- View is from the back of the chamber (exit) looking in
- Gray surface is the face plate where pipes meet chamber

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

TASK-3 NH₃/H₂/N₂ MIXTURE

TASK 3 OVERVIEW: COMBUSTING SIMULATION (NH₃/H₂/N₂)

• Geometry: 19 fuel injection pipes and a combustion chamber

Task 3

- Steady state RANS reacting flow simulation calculations
- Boundary Conditions:

 NH_2

Air

Port 1

			Table D			
iadiy	conditions:		Case1	Case2	Case3	
			η = 0.4	η = 0.5	η = 0.6	
	Fuel Composition		NH3/H2/N2 mix	NH3/H2/N2 mix	NH3/H2/N2 mix	
NH3 @ 305.4K	Fuel Inlet Mass Flow (Port 1)	kg/s	0.023638	0.01970	0.01576	
H2 @ 294.3K	Fuel Inlet Mass Flow (Port 3)	kg/s	0.00280	0.00350	0.00420	
N2 @ 294.3K	Fuel Inlet Mass Flow (Port 3)	kg/s	0.01296	0.01620	0.01944	
	Oxidizer Inlet Mass Flow	kg/s	0.454	0.454	0.454	
	Oxidizer Inlet Temp.	К	755.4	755.4	755.4	
	Exit Back Pressure	MPa	0.573	0.573	0.573	

 H_2/N_2 Port 3

Chemical reaction mechanism:

33 species and 251 reactions

Exit

TASK 3: GRID OVERVIEW

• Grid features:

Hybrid unstructured mesh

➤ 11 million cells

- Significant resolution required near injection holes
- High resolution near posts required to resolve flame shape and obtain better numerical stability
- Grid issues resolved in Task 2:
 - Final Task 2 combustion chamber grid used for Task 3
 - Updated grid to include fuel port 1 and remove fuel port 2

TEMPERATURE PLOT

Case 1 (η =0.4)

Temperature (K)							
1900.00	2007.50	2115.00	2222.50	2330.00			

Case 2 (η =0.5)

TEMPERATURE ISOVOLUME > 1900 K

Case 1 (η =0.4)

Case 2 (η =0.5)

- Inner flames show similar temperature structure for all three cases except for length
- Top and bottom high temperature structure very different

TEMPERATURE ISOVOLUME > 1900 K

- View is from the back of the chamber (exit) looking in
- Gray surface is the face plate where pipes meet chamber
- Inner flames show similar temperature structure for all three cases except for length
- Top and bottom temperature structure very different

SPECIES PLOTS: NO MASS FRACTION

SPECIES PLOTS: NO₂ MASS FRACTION

0.00050

0.00075

0.00100

0.00025

0.00000

COMPUTATIONAL COST

- All simulations were conducted on the Broadwell nodes on the mid-sized supercomputing cluster (Bebop) at ANL :
 - Strong scaling studies were performed to determine optimal number of nodes for each simulation.
 - Cold flow simulations were run on 108 cores (3 nodes) and took about 5 hours for convergence (achieving less than 0.1% mass error)
 - ➢ Reacting flow simulations were run on 360 cores (10 nodes).
 - Typical time for simulations were 8-10 days (200 240 hours) depending on the mechanism size.
 - Large amounts of computational resources are needed to accurately resolve the jet (high resolution mesh) and to obtain good mass flow convergence (< 0.1% error).</p>

CURRENT STATUS

- Design refinement using 1-D model (ongoing)
- CFD analysis to identify optimal fraction of dissociation (completed)
 - Ideally, 0.4 < η < 0.7</p>

FUTURE TASKS

Phase-3: Fuel Preconditioner design & build (FY 24) Phase-4: Demonstration in 1MW Combustor (FY 25)

THANK YOU!

