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Ammonia Combustion at Purdue
Background
● Challenges with ammonia combustion (kinetics, emissions, 

etc.) motivates blending with other fuels like H2 or CH4

● Limited combustion investigations of these blended fuels at 
high pressure, Re, and Pthermal

Goals
● Develop a high-pressure ammonia storage system

o Capable of liquid or gaseous injection
o Large-scale storage capable of steady-state operation

o Conduct NH3-blended combustion experiments at engine 
relevant conditions (P4 ≥ 10 bar, T3 ≈ 750 K)
o Investigate impacts of fuel composition on combustion 

dynamics and emissions
o Study flame structure and coupled behaviors under high 

turbulence

Okafor et al. 2021

Coulon et al. 2023

Jin and Kim 2024

https://www.sciencedirect.com/science/article/pii/S1540748920302224
https://www.sciencedirect.com/science/article/pii/S0010218023003140
https://www.sciencedirect.com/science/article/pii/S0010218024000762
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Ammonia System Overview
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● Ammonia filled into piston tank as saturated liquid
● Liquid ammonia delivered from piston tank to vaporizer

o Linear encoder provides position feedback from piston
● Gaseous ammonia flowrate metered using critical flow venturi nozzle
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Ammonia System Specifications
● 4 piston tanks, total of 115 liter storage up to 350 bar
● Accumulators capable of running individually or in parallel
● Ethylene propylene rubber (EDPM) or PTFE used for all 

elastomeric sealing
● Dump barrels filled with water + antifreeze
● 54 kW electrically heated ammonia vaporizer
● Lines from vaporizer outlet to experiment wrapped in heat 

tape

Linear encoders

N2 relief valves

N2 supply circuit

NH3 supply & relief 
valves (below)

Fuel 
Out

Fuel In

NH3 tanks
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Safety and Detection
● All filling operations performed 

remotely
● 4 x ammonia gas sensors (0 – 75 

PPM full-scale) located throughout 
test cell

● Restricted areas prevent access up 
to 20 ft minimum

● Full PPE required for all handling of 
ammonia

4x

Roof access 
restricted

Ammonia Release 
Barrel Locations

TC4

ZL8
ZL3
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Ammonia System Lessons Learned
● Filling behavior dependent on ambient 

conditions
o Lower temperature means less ΔP for filling

● Significant heating required to vaporize 
ammonia
o High latent enthalpy of vaporization
o Joule Thompson cooling during expansion

● Careful consideration of trapped liquid volumes
o

𝑑𝑑𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣
𝑑𝑑𝑑𝑑

is large near ambient conditions
o Thermal expansion

● Lab goggles or full-mask respirators 
recommended for ammonia handling

● Human detection limit often lower than sensors
o Easy to tell if concentration is rising well 

before it becomes dangerous
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● 0.7 MW high pressure (~10 bar) optically accessible combustion 
chamber

● Canonical combustor configuration with well defined acoustic 
boundaries suitable for model validation

● Explore flame structure and dynamics with hydrogen, ammonia, 
and mixtures of these fuels with methane

● Premixed multi-stage, multi-tube, micromix (M3) injector
• Reinj ≈ 150000

Experiment Methodology

𝛘𝛘 𝛈𝛈
3
2 H2 +

1
2 N2 + 1 − 𝛈𝛈 NH3 + 1 − 𝛘𝛘 CH4

𝛘𝛘 = hydrogen fraction
𝛈𝛈 = ammonia decomposition efficiency

Fuel Composition

∅80

NH3 CH4 H2
M=1 M=1 M=1
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Micromixer Flame Structure
● 100 kHz planar laser-induced fluorescence of 

OH performed using burst mode laser
• Time-resolved flame structure imaging
• Time-average shows prominent features

χ = 0.9,η = 1.0
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χ = 0.9,η = 1.0

𝛘𝛘 𝛈𝛈
3
2

H2 +
1
2

N2 + 1 − 𝛈𝛈 NH3 + 1 − 𝛘𝛘 CH4

𝛘𝛘 = hydrogen fraction
𝛈𝛈 = ammonia decomposition efficiency

Fuel Composition

Reactant 
core

Shear layer 
burning

Merging 
region

Inter-flame 
region

● Multi-plane imaging reveals 3D flame structure
• Reactions occur through entire injector 

circumference on average

Hodge et al., “Time-Resolved Structure of H 2 –NH 3 and H 2 –CH 4 Flames in a High-
Pressure Micromix Combustor,” International Journal of Hydrogen Energy, Vol. 163, 2025, 
p. 150596. https://doi.org/10.1016/j.ijhydene.2025.150596

https://doi.org/10.1016/j.ijhydene.2025.150596
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● H2 flame has a compact, highly 
curved flame front

● Reactivity and flame speed 
decreases with CH4

● Distribution of OH is more diffuse
● Reactant core angle increases
● Flame wrinkling length scale 

increases
● OH broadens out to inter-flame 

region

Effect of CH4 Addition

Diffuse OH 
regions

Large 
amplitude 

fluctuations

𝛘𝛘 𝛈𝛈
3
2

H2 +
1
2

N2 + 1 − 𝛈𝛈 NH3 + 1 − 𝛘𝛘 CH4

𝛘𝛘 = hydrogen fraction
𝛈𝛈 = ammonia decomposition efficiency

Fuel Composition

Hodge et al., “Time-Resolved Structure of H 2 –NH 3 and H 2 –CH 4 Flames in a High-
Pressure Micromix Combustor,” International Journal of Hydrogen Energy, Vol. 163, 2025, 
p. 150596. https://doi.org/10.1016/j.ijhydene.2025.150596

https://doi.org/10.1016/j.ijhydene.2025.150596
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● OH regions are more diffuse 
compared to CH4 addition

● Reactant core length increases 
significantly

● Global decrease in OH 
● Significant disparity in reactant 

core length 
• Highlights presence of near-

wall recirculation zones1

Effect of NH3 Addition

Near-wall 
recirculation 

zones

𝛘𝛘 𝛈𝛈
3
2

H2 +
1
2

N2 + 1 − 𝛈𝛈 NH3 + 1 − 𝛘𝛘 CH4

𝛘𝛘 = hydrogen fraction
𝛈𝛈 = ammonia decomposition efficiency

Fuel Composition

Hodge et al., “Time-Resolved Structure of H 2 –NH 3 and H 2 –CH 4 Flames in a High-
Pressure Micromix Combustor,” International Journal of Hydrogen Energy, Vol. 163, 2025, 
p. 150596. https://doi.org/10.1016/j.ijhydene.2025.150596

[1] 
[1] Zhang et al., “Three-Dimensional Analysis of Hydrogen Fuel Effects in Multi-Tube 
Combustor,” Proceedings of the Combustion Institute, Vol. 41, 2025, p. 105790. 
https://doi.org/10.1016/j.proci.2025.105790

https://doi.org/10.1016/j.ijhydene.2025.150596
https://doi.org/10.1016/j.proci.2025.105790
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Parametric Survey of Dynamics
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● High amplitude pressure fluctuations 𝑝𝑝′ observed
• Methane addition observed to promote combustion instabilities
• Combustion instability amplitude is largely invariant to the 

addition of ammonia in absence of methane
• As hydrogen content is decreased, ammonia addition increases 

combustion instability amplitudes

𝛘𝛘 𝛈𝛈
3
2

H2 +
1
2

N2 + 1 − 𝛈𝛈 NH3 + 1 − 𝛘𝛘 CH4

𝛘𝛘 = hydrogen fraction
𝛈𝛈 = ammonia decomposition efficiency

Fuel Composition

χ = 0.7, η = 1.0 χ = 0.7, η = 0.7

Shahin et al., “Dynamics of Hydrogen–Ammonia–Natural Gas 
Lean-Premixed High-Pressure Flames,” Fuel, Vol. 385, 2025, p. 
134016. https://doi.org/10.1016/j.fuel.2024.134016

https://doi.org/10.1016/j.fuel.2024.134016
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𝝌𝝌 = 𝟎𝟎.𝟒𝟒𝟒𝟒,𝜼𝜼 = 𝟏𝟏.𝟎𝟎𝟎𝟎𝝌𝝌 = 𝟎𝟎.𝟗𝟗𝟗𝟗,𝜼𝜼 = 𝟏𝟏.𝟎𝟎𝟎𝟎

Dynamics Sensitivity to Methane Addition

𝛘𝛘 𝛈𝛈
3
2

H2 +
1
2

N2 + 1 − 𝛈𝛈 NH3 + 1 − 𝛘𝛘 CH4

𝛘𝛘 = hydrogen fraction
𝛈𝛈 = ammonia decomposition efficiency

Fuel Composition𝝌𝝌 = 𝟎𝟎.𝟑𝟑𝟑𝟑,𝜼𝜼 = 𝟏𝟏.𝟎𝟎𝟎𝟎

● Time-resolved OH PLIF shows flame response during instability cycle

Shahin et al., “Structure of High-Pressure Premixed Ammonia, Hydrogen, and 
Methane Flames with 100 kHz OH-PLIF Measurements,” Journal of Engineering for 
Gas Turbines and Power, 2025, pp. 1–14. https://doi.org/10.1115/1.4069450

https://doi.org/10.1115/1.4069450
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𝝌𝝌 = 𝟎𝟎.𝟖𝟖𝟖𝟖,𝜼𝜼 = 𝟎𝟎.𝟓𝟓𝟎𝟎 𝝌𝝌 = 𝟎𝟎.𝟖𝟖𝟖𝟖,𝜼𝜼 = 𝟎𝟎.𝟒𝟒𝟒𝟒

Dynamics Sensitivity to Ammonia Addition

𝛘𝛘 𝛈𝛈
3
2

H2 +
1
2

N2 + 1 − 𝛈𝛈 NH3 + 1 − 𝛘𝛘 CH4

𝛘𝛘 = methane fuel fraction
𝛈𝛈 = hydrogen decomposition efficiency

Fuel Composition

● Time-resolved OH PLIF shows flame response during instability cycle

Shahin et al., “Structure of High-Pressure Premixed Ammonia, Hydrogen, and 
Methane Flames with 100 kHz OH-PLIF Measurements,” Journal of Engineering for 
Gas Turbines and Power, 2025, pp. 1–14. https://doi.org/10.1115/1.4069450

https://doi.org/10.1115/1.4069450
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Dynamics Sensitivity to Ammonia Addition

𝛘𝛘 𝛈𝛈
3
2

H2 +
1
2

N2 + 1 − 𝛈𝛈 NH3 + 1 − 𝛘𝛘 CH4

𝛘𝛘 = methane fuel fraction
𝛈𝛈 = hydrogen decomposition efficiency

Fuel Composition● Image binarization achieved using semantic 
segmentation

• Employs convolutional neural network
• Model identifies the reactant jet

● Noticeable improvement over gradient-based 
edge tracking

● Allows for time-resolved tracking of reactant 
area and flame front 
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𝝌𝝌 = 𝟎𝟎.𝟖𝟖𝟖𝟖
𝜼𝜼 = 𝟎𝟎.𝟒𝟒𝟒𝟒

1L Unstable

𝝌𝝌 = 𝟎𝟎.𝟗𝟗𝟗𝟗 𝜼𝜼 = 𝟏𝟏.𝟎𝟎𝟎𝟎 𝝌𝝌 = 𝟏𝟏.𝟎𝟎𝟎𝟎 𝜼𝜼 = 𝟎𝟎.𝟑𝟑𝟑𝟑

● Instability mode switch can be tied to the 
duration of reactant area consumption

• 27 frames (270 𝜇𝜇𝜇𝜇) to consume reactants in 
2L case (longer than 2L methane case)

• 60 frames (600 𝜇𝜇𝜇𝜇) to consume reactants in 
1L case
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● Flame surface density (FSD) generated 
from flame fronts of all frames

● Upstream FSD width larger with more 
ammonia, indicating slower kinetics

● Downstream FSD width also larger with 
more ammonia, indicating larger 
amplitude flame front fluctuations

Effect of Ammonia Addition on Flame Structure

𝝌𝝌 = 𝟎𝟎.𝟗𝟗𝟗𝟗 𝜼𝜼 = 𝟏𝟏.𝟎𝟎𝟎𝟎 𝝌𝝌 = 𝟏𝟏.𝟎𝟎𝟎𝟎 𝜼𝜼 = 𝟎𝟎.𝟑𝟑𝟑𝟑

𝛘𝛘 𝛈𝛈
3
2

H2 +
1
2

N2 + 1 − 𝛈𝛈 NH3 + 1 − 𝛘𝛘 CH4

𝛘𝛘 = methane fuel fraction
𝛈𝛈 = hydrogen decomposition efficiency

Fuel Composition
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Effect of Ammonia Addition on Flame Structure
● Probability density functions (PDF) for radius of curvature (r) 

show the impact of NH3 on flame structure
● Over entire FOV, slight bias towards negative curvature due 

geometry of the jet flames
● In upstream region, curvature more uniform with more H2

o H2 induces thermo-diffusive instabilities that balance 
flame surface production from turbulent flow strain1

● In downstream region, this trend is reversed
o Rapid surface annihilation near reactant core tip 

enhanced with more H2, causing negative curvature bias

𝝌𝝌 = 𝟏𝟏.𝟎𝟎𝟎𝟎 𝜼𝜼 = 𝟎𝟎.𝟖𝟖𝟖𝟖
𝝌𝝌 = 𝟏𝟏.𝟎𝟎𝟎𝟎 𝜼𝜼 = 𝟎𝟎.𝟕𝟕𝟕𝟕
𝝌𝝌 = 𝟏𝟏.𝟎𝟎𝟎𝟎 𝜼𝜼 = 𝟎𝟎.𝟑𝟑𝟑𝟑

𝛘𝛘 𝛈𝛈
3
2

H2 +
1
2

N2 + 1 − 𝛈𝛈 NH3 + 1 − 𝛘𝛘 CH4

𝛘𝛘 = methane fuel fraction
𝛈𝛈 = hydrogen decomposition efficiency

Fuel Composition

[1] Coulon, V., Gaucherand, J., Xing, V., Laera, D., Lapeyre, C., and Poinsot, T., “Direct 
Numerical Simulations of Methane, Ammonia-Hydrogen and Hydrogen Turbulent 
Premixed Flames,” Combustion and Flame, Vol. 256, 2023, p. 112933. 
https://doi.org/10.1016/j.combustflame.2023.112933

https://doi.org/10.1016/j.combustflame.2023.112933
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● High pressure ammonia storage systems present novel 
challenges for safe and efficient use

● The addition of NH3 and CH4 alters the flame shape and 
distribution of reactions

● Combustion stability map shows sensitivity of 
thermoacoustics to NH3 and CH4 addition

● Time-resolved OH PLIF reveals how local flame behaviors 
affect the global dynamics 

● Flame front tracking shows how fuel composition affects 
the turbulent flow-flame processes, leading to changes in 
combustion dynamics

Summary
H2-NG

H2-NH3-NG

H2-NH3
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