Ammonia Combustion at Purdue

2nd September 2025

Zander Hodge Tristan Shahin Rohan Gejji Prof. Carson Slabaugh Prof. Robert Lucht

School of Aeronautics and Astronautics School of Mechanical Engineering Purdue University West Lafayette, IN

Ammonia Combustion at Purdue

Background

- Challenges with ammonia combustion (kinetics, emissions, etc.) motivates blending with other fuels like H₂ or CH₄
- Limited combustion investigations of these blended fuels at high pressure, Re, and P_{thermal}

Goals

- Develop a high-pressure ammonia storage system
 - Capable of liquid or gaseous injection
 - Large-scale storage capable of steady-state operation
- Conduct NH₃-blended combustion experiments at engine relevant conditions ($P_4 \ge 10$ bar, $T_3 \approx 750$ K)
 - Investigate impacts of fuel composition on combustion dynamics and emissions
 - Study flame structure and coupled behaviors under high turbulence

Fig. 3. Isosurfaces of $c = c^*$, retrieved at $t = 2\tau$ and colored by HRR normalized by the maximum value in the corresponding 1D unstretched laminar flame for all cases. CH₄ case at $c^*_{CH_4} = 0.72$ (left), NH₃-H₂ case at $c^*_{h,0} = 0.78$ (center), H₂ case at $c^*_{h,1} = 0.85$ (right). (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

NH₃-air, 0.1 MPa NH₃-air, 0.3 MPa NH₃-air, 0.3 MPa $\phi = 0.9$ Uninsulated square quartz glass liner

Fig. 2. OH-PLIF images of the swirl stabilized premixed flames in the uninsulated square-shaped liner.

Okafor et al. 2021

Coulon et al. 2023

Ammonia System Overview

- Ammonia filled into piston tank as saturated liquid
- Liquid ammonia delivered from piston tank to vaporizer
 - Linear encoder provides position feedback from piston
- Gaseous ammonia flowrate metered using critical flow venturi nozzle

Ammonia System Specifications

- 4 piston tanks, total of 115 liter storage up to 350 bar
- Accumulators capable of running individually or in parallel
- Ethylene propylene rubber (EDPM) or PTFE used for all elastomeric sealing
- Dump barrels filled with water + antifreeze
- 54 kW electrically heated ammonia vaporizer
- Lines from vaporizer outlet to experiment wrapped in heat tape

Linear encoders

NH₃ tanks

N₂ relief valves

N₂ supply circuit

NH₃ supply & relief valves (below)

Safety and Detection

- All filling operations performed remotely
- 4 x ammonia gas sensors (0 75 PPM full-scale) located throughout test cell
- Restricted areas prevent access up to 20 ft minimum
- Full PPE required for all handling of ammonia

Roof access restricted

Ammonia Release Barrel Locations

Ammonia System Lessons Learned

- Filling behavior dependent on ambient conditions
 - Lower temperature means less ΔP for filling
- Significant heating required to vaporize ammonia
 - High latent enthalpy of vaporization
 - Joule Thompson cooling during expansion
- Careful consideration of trapped liquid volumes
 - $\circ \frac{dP_{vap}}{dT}$ is large near ambient conditions
 - Thermal expansion
- Lab goggles or full-mask respirators recommended for ammonia handling
- Human detection limit often lower than sensors
 - Easy to tell if concentration is rising well before it becomes dangerous

Experiment Methodology

FURBUE BOFULSION

- 0.7 MW high pressure (~10 bar) optically accessible combustion chamber
- Canonical combustor configuration with well defined acoustic boundaries suitable for model validation
- Explore flame structure and dynamics with hydrogen, ammonia, and mixtures of these fuels with methane
- Premixed multi-stage, multi-tube, micromix (M³) injector
 - $Re_{inj} \approx 150000$

Fuel Composition

$$\chi \left[\eta \left(\frac{3}{2} H_2 + \frac{1}{2} N_2 \right) + (1 - \eta) N H_3 \right] + (1 - \chi) C H_4$$

 χ = hydrogen fraction

 $\eta=$ ammonia decomposition efficiency

Micromixer Flame Structure

- 100 kHz planar laser-induced fluorescence of OH performed using burst mode laser
 - Time-resolved flame structure imaging
 - Time-average shows prominent features
- Multi-plane imaging reveals 3D flame structure
 - Reactions occur through entire injector circumference on average

Hodge et al., "Time-Resolved Structure of H 2 -NH 3 and H 2 -CH 4 Flames in a High-Pressure Micromix Combustor," International Journal of Hydrogen Energy, Vol. 163, 2025, p. 150596. https://doi.org/10.1016/j.ijhydene.2025.150596

Effect of CH₄ Addition

- H₂ flame has a compact, highly curved flame front
- Reactivity and flame speed decreases with CH₄
- Distribution of OH is more diffuse
- Reactant core angle increases
- Flame wrinkling length scale increases
- OH broadens out to inter-flame region

Fuel Composition

$$\chi \left[\eta \left(\frac{3}{2} H_2 + \frac{1}{2} N_2 \right) + (1 - \eta) N H_3 \right] + (1 - \chi) C H_4$$

 χ = hydrogen fraction

 $\eta=$ ammonia decomposition efficiency

Hodge et al., "Time-Resolved Structure of H 2 –NH 3 and H 2 –CH 4 Flames in a High-Pressure Micromix Combustor," International Journal of Hydrogen Energy, Vol. 163, 2025, p. 150596. https://doi.org/10.1016/j.ijhydene.2025.150596

Effect of NH₃ Addition

- OH regions are more diffuse compared to CH₄ addition
- Reactant core length increases significantly
- Global decrease in OH
- Significant disparity in reactant core length
 - Highlights presence of nearwall recirculation zones¹

Fuel Composition

$$\chi \left[\eta \left(\frac{3}{2} H_2 + \frac{1}{2} N_2 \right) + (1 - \eta) N H_3 \right] + (1 - \chi) C H_4$$

 χ = hydrogen fraction

September 2, 2025

 η = ammonia decomposition efficiency

[1] Zhang et al., "Three-Dimensional Analysis of Hydrogen Fuel Effects in Multi-Tube Combustor," *Proceedings of the Combustion Institute*, Vol. 41, 2025, p. 105790. https://doi.org/10.1016/j.proci.2025.105790

Hodge et al., "Time-Resolved Structure of H 2 –NH 3 and H 2 –CH 4 Flames in a High-Pressure Micromix Combustor," International Journal of Hydrogen Energy, Vol. 163, 2025, p. 150596. https://doi.org/10.1016/j.ijhydene.2025.150596

10

Parametric Survey of Dynamics

FURBUE BOPULSION

- High amplitude pressure fluctuations (p') observed
 - Methane addition observed to promote combustion instabilities
 - Combustion instability amplitude is largely invariant to the addition of ammonia in absence of methane
 - As hydrogen content is decreased, ammonia addition increases combustion instability amplitudes

Fuel Composition

$$\chi \left[\eta \left(\frac{3}{2} H_2 + \frac{1}{2} N_2 \right) + (1 - \eta) NH_3 \right] + (1 - \chi) CH_4$$

 χ = hydrogen fraction

 η = ammonia decomposition efficiency

Shahin et al., "Dynamics of Hydrogen—Ammonia—Natural Gas Lean-Premixed High-Pressure Flames," Fuel, Vol. 385, 2025, p. 134016. https://doi.org/10.1016/j.fuel.2024.134016

Dynamics Sensitivity to Methane Addition

• Time-resolved OH PLIF shows flame response during instability cycle

x [mm]

Fuel Composition

$$\chi \left[\eta \left(\frac{3}{2} H_2 + \frac{1}{2} N_2 \right) + (1 - \eta) NH_3 \right] + (1 - \chi) CH_4$$

 $\chi =$ hydrogen fraction

 η = ammonia decomposition efficiency

Shahin et al., "Structure of High-Pressure Premixed Ammonia, Hydrogen, and Methane Flames with 100 kHz OH-PLIF Measurements," Journal of Engineering for Gas Turbines and Power, 2025, pp. 1–14. https://doi.org/10.1115/1.4069450

Dynamics Sensitivity to Ammonia Addition

Time-resolved OH PLIF shows flame response during instability cycle

Fuel Composition

$$\chi \left[\eta \left(\frac{3}{2} H_2 + \frac{1}{2} N_2 \right) + (1 - \eta) NH_3 \right] + (1 - \chi) CH_4$$

 χ = methane fuel fraction

 η = hydrogen decomposition efficiency

Dynamics Sensitivity to Ammonia Addition

- Image binarization achieved using semantic segmentation
 - Employs convolutional neural network
 - Model identifies the reactant jet
- Noticeable improvement over gradient-based edge tracking
- Allows for time-resolved tracking of reactant area and flame front
- Instability mode switch can be tied to the duration of reactant area consumption
 - 27 frames (270 μ s) to consume reactants in 2L case (longer than 2L methane case)
 - 60 frames (600 μ s) to consume reactants in 1L case

Fuel Composition

$$\chi \left[\eta \left(\frac{3}{2} H_2 + \frac{1}{2} N_2 \right) + (1 - \eta) NH_3 \right] + (1 - \chi) CH_4$$

 χ = methane fuel fraction

 $\eta=$ hydrogen decomposition efficiency

$$\chi = 0.90 \, \eta = 1.00$$

$$\chi = 1.00 \, \eta = 0.32$$

Effect of Ammonia Addition on Flame Structure

FURBUE BOFULSION

- Flame surface density (FSD) generated from flame fronts of all frames
- Upstream FSD width larger with more ammonia, indicating slower kinetics
- Downstream FSD width also larger with more ammonia, indicating larger amplitude flame front fluctuations

Fuel Composition

$$\chi \left[\eta \left(\frac{3}{2} H_2 + \frac{1}{2} N_2 \right) + (1 - \eta) N H_3 \right] + (1 - \chi) C H_4$$

 χ = methane fuel fraction

 η = hydrogen decomposition efficiency

Effect of Ammonia Addition on Flame Structure

- Probability density functions (PDF) for radius of curvature (r) show the impact of NH₃ on flame structure
- Over entire FOV, slight bias towards negative curvature due geometry of the jet flames
- In upstream region, curvature more uniform with more H₂
 - H₂ induces thermo-diffusive instabilities that balance flame surface production from turbulent flow strain¹
- In downstream region, this trend is reversed
 - Rapid surface annihilation near reactant core tip enhanced with more H₂, causing negative curvature bias

Fuel Composition

$$\chi \left[\eta \left(\frac{3}{2} H_2 + \frac{1}{2} N_2 \right) + (1 - \eta) N H_3 \right] + (1 - \chi) C H_4$$

 χ = methane fuel fraction

 η = hydrogen decomposition efficiency

r [mm]

 $\chi = 1.00 \, \eta = 0.89$

 $[\]chi = 1.00 \, \eta = 0.70$ $\chi = 1.00 \, \eta = 0.32$ 0.3 PDF 0.1 (b) 0.3 PDF 0.1 0.3 PDF 0.1

^[1] Coulon, V., Gaucherand, J., Xing, V., Laera, D., Lapeyre, C., and Poinsot, T., "Direct Numerical Simulations of Methane, Ammonia-Hydrogen and Hydrogen Turbulent Premixed Flames," Combustion and Flame, Vol. 256, 2023, p. 112933. https://doi.org/10.1016/j.combustflame.2023.112933

Summary

- High pressure ammonia storage systems present novel challenges for safe and efficient use
- The addition of NH₃ and CH₄ alters the flame shape and distribution of reactions
- Combustion stability map shows sensitivity of thermoacoustics to NH₃ and CH₄ addition
- Time-resolved OH PLIF reveals how local flame behaviors affect the global dynamics
- Flame front tracking shows how fuel composition affects the turbulent flow-flame processes, leading to changes in combustion dynamics

This work was supported by the Department of Energy University Turbine Systems Research (UTSR) program grant DE-FE0032074 (Program Manager: Andrew O'Connell). The high-speed imaging equipment used in this work was purchased with Defense University Research Instrumentation Program grant FA9550-20-1-0226 (Program Manager: Chiping Li).

