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Background

[1] Hayakawa, A. et al. 2017: 10.1016/j.ijhydene.2017.01.046

[2] Cole, Renee, et al. GT2024-122369

[3] Gubbi, S., et al.  ACS Energy Letters, 8(10), pp. 4421-4426.

RQL (Rich Quick-Mixed Lean)

• Rich NH3 flames for low NO emissions

• Unburnt fuel from the main rich combustion zone, mainly H2!!

• Additional air is injected to oxidize all the remaining fuel

RRQL (Rich Relax Quick-Mixed Lean)

Could also impact NH3 cracking → 

NOx production in the secondary stage



Swirl pattern effect on exhaust 

emissions and chemiluminescence 

distribution for NH3-air premixed 

swirl flames
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Experimental setup

We measured:
• Exhaust emissions 

     NOx-N2O-NH3-O2 (CAI 700 FTIR and LX)

• Flame images

 OH* → 308 ± 10 nm

 NH2
*
→ 633 ± 10 nm

Constant: 
• U0 = 0.90 m/s

• NH3-air premixed flames

• Primary Quartz length = 178 mm

We varied:
• Probe position

• Swirler geometry

Tag Sg 

[-]

# of vanes 

[-]

Vane type 

[-]

Vane angle 

[deg]

Effective area 

[m2]

Sg0.7-S16 0.7 16 Straight 43.25 6.7E-4

Sg1.1-C8 1.1 8 Curved 45.18 8.8E-4

Sg1.1-C12 1.1 12 Curved 35.90 7.8E-4

Sg1.1-S12 1.1 12 Straight 55.95 7.8E-4

Sg1.1-S16 1.1 16 Straight 55.95 6.7E-4

DSLR or 

Intensified 

Camera



5

Takeaway:

• Compared to Sg1.1-C8, Sg1.1-S16 minimizes 

lobe structures and liner interaction

Exhaust emissions

•  Sg1.1-C8 is documented (Cole, R. et al. GT2024-122369) 

• Lobe structures and liner interaction seen with NH3

• Increasing the number of vanes (Sg1.1-C12) minimizes 

lobe features 

• Changing vane geometry (Sg1.1-S12) elongates the flame 

and minimizes lobe features

• Increasing the number of vanes (Sg1.1-S16) creates smooth 

IRZ flame
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Flame Chemiluminescence

Takeaway:

• Compared to Sg1.1-C8, Sg1.1-S16 minimizes 

lobe structures and liner interaction

• Lobed swirlers (Sg1.1-C8, C12, S12) show reduced areas 

of increased radical concentration, especially for NH2
*

• Swirler-induced flow stratification and azimuthal 

non-uniformities near the outlet

• Traditional swirlers (Sg1.1-S16) produce smooth NH2
* 

profiles and compact, lifted OH* regions, consistent with 

stable inner recirculation zone (IRZ) structures and 

improved radial mixing
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Area Averaged Emissions

Takeaway:

• Swirler geometry impacts ϕ which minimizes 

NOₓ and NH3 emissions

• Consistent overall emissions trends with 

known fuel-rich NH3 combustion

• Swirler geometry shifts the optimal ϕ with 

minimal NOₓ/ NH3 balance
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Emissions Evolution: ϕprimary = 1.13 / Sg1.1-S16

τres ~80 ms

τres ~15 ms
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Summary
• Chemiluminescence images showed that less flame-wall interaction is achieved by increasing the 

number of vanes

• The low NOx-NH3 sweet spot shifts towards richer ϕ by increasing the number of vanes

• Sg1.1-C8 swirler achieves slightly lower NOx emissions but higher N2O and NH3 in contrast with 

Sg1.1-S16 at the same ϕ

• Lower NH3 cracking → higher fuel-NOx in a further lean secondary stage

• Lower H2 concentration for the secondary stage, hence lower thermal power

• Heat losses through the walls due to the lobes-like structures → higher N2O concentration

We chose Sg1.1-S16 for further RRQL studies



Effects of the primary 

combustion zone length and 

secondary stage number of 

holes on stability and emissions
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Experimental setup

We measured:
• Exhaust emissions 

     NOx-N2O-NH3-O2 (CAI 700 FTIR and LX)

• Flame images

Constant: 
• U0 = 0.90 m/s

• NH3-air premixed flames

• Sg = 1.1 (straight 16 vanes)

• Holes diameter: 2.03 mm

We varied:
• ϕprimary = 1.13-1.15-1.18

Campaign 1 (5H)

• Quartz length = 76 or 178 mm

• ϕglobal = 1.10 down to 0.5 or blowout

Campaign 2 (5H/10H/16H)

• Quartz length = 178 mm

• ϕglobal = 1.10 down to 0.5 or blowout
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• NOx increases as a function of ϕglobal while N2O is constant and 

NH3 decreases

• Increasing ϕprimary reduces flame speed and increases N2O and NH3 

emissions

• Lower operability range with short CC → primary flame blows out 

due to strong interaction with second stage jets (ϕglobal = 0.76)

• Higher NOx emissions → high interaction between air jets and 

primary flame may produce local lean pockets

• Lower N2O is measured for short CC → probably higher 

temperatures → long CC means also higher heat losses

• This is also observed for NH3 emissions → probably a leaner 

flame is produced with short CC, explaining high NOx

Takeaway:

• Long CC is better not only for lower NOx but 

higher stability

• ϕprimary = 1.13 yields better results

Blowout!

Exhaust emissions
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Results: Flame images



SS flame images - ϕprimary = 1.13 

Transition from diffusion-like (Jet structures) to partially premixed-like (mixed and uniform) 

Secondary stage interacting with primary flame for ϕglobal < 0.70 !

0.55 0.70 0.80 0.85 0.90 0.95 1.00 1.13

ϕglobal

5H

10H

16H
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Summary

• Long combustion chamber is better → lower NOx and higher stability → reduces PS-SS interaction

• ϕprimary = 1.13 yields better results → simultaneous low emissions

• Secondary stage geometry plays a role → 5H yields better NO-N2O emissions

• Differences between geometries (NO and N2O) are more noticeable by increasing ϕprimary 

• Diffusion-like combustion found at low air additions (0.90 ≤ ϕglobal ≤ 1.10) → such conditions not 

desirable due to low combustion efficiency

• Transition from diffusion-like to premixed-like combustion observed to yield lower NOx emissions → 

0.50 ≤ ϕglobal ≤ 0.70 seems to be an optimum range → TIT = 1450 – 1720 K

Conclusion:

• Longer combustion chamber needed → increases PS residence time

• ϕprimary and secondary stage geometry tuning is key

• Reach high J (low ϕglobal) for premixed-like combustion



Exhaust emissions point 

measurements on the secondary 

stage of an NH3 RRQL system
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Experimental setup

We measured:
• Exhaust emissions 

     NO-NO2 (CLD50)

     N2O-NH3-O2 (CAI 700 FTIR and LX)

• Flame images

Constant: 
• U0 = 0.90 m/s

• NH3-air premixed flames

• Sg = 1.1 (straight 16 vanes)

• Quartz length = 178 mm

• Number of holes = 5

• Holes diameter = 4.1 mm

We varied:
• ϕprimary = 1.13-1.15

• ϕglobal = 0.85 (diffusion-like)  

   0.60 

(premixed-like)

• Sampling position 

Clear Fused Quartz Probe 

2.3mm ID x 6.3mm OD x 100mm long tapered to a 

1.5mm diameter opening on one end



• Low NO and near-zero NO2 from primary stage → NO is formed 

upstream the jets plane (center core), while NO2 is quickly formed 

at and downstream the jets’ plane

• Low and well distributed NO concentration downstream the jets 

plane close to burners' outlet

• This agrees with [4] and [5] simulations → highest H2 

consumption is allocated in the center core upstream the jets

• Homogeneous NH3 from primary flame → consumed at the jets 

plane and downstream → reaction zone upstream the jets plane 

• N2O is not highly impacted by the secondary stage, increasing 

only by a couple ppm
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Between jets plane
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Crossing jets plane
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ϕprimary = 1.13 - ϕglobal = 0.85

[4] Sun et al. GT2024-123845

[5] Liu., et al. Chinese Journal of Aeronautics 37.4 (2024): 243-255

[6] Okafor – PROCI 2021

• NO and NO2 are formed mostly in the inner core where the jets 

interacts → highest concentration slightly upstream and 

downstream the jets plane

• Their concentration decrease as we move towards the secondary 

stage wall → lower temperatures (non-reacting zone)

• NH3
 mainly consumed in the center core upstream the jets plane 

→ slips through the walls, but consumed before leaving the burner 

• N2O is formed in the region close to the wall and slips through → 

low temperature of the walls might be responsible [6]

Between 

jets plane

Crossing 

jets plane

0
13

25

R [mm]

Between 

jets plane

Crossing 

jets plane

0
13

25

R [mm]

• A non-negligible portion of total NOx (50% in some 

sampling positions) is composed of NO2 after the lean 

secondary combustion zone. Therefore, considering NO as 

the sole constituent of total NOx for NH3 combustion is not 

recommended if a staged strategy, such as the RRQL 

system, is implemented.

For representation only!
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ϕprimary = 1.15 - ϕglobal = 0.85

• Same trends for NO and NO2 for both sampling planes
 

• NOx concentration leaving the burner is around 40% higher

• Much higher NH3 concentration reaching the secondary stage 

(about 100%)→ increasing fuel NOx pathway

• N2O emissions are much higher at the downstream region, with 

the higher concentration region close to the walls 

• In agreement with the simulations by [4] and [5], N2O is formed in 

the Leeward side of the jets → related to NH3 chemistry 

[4] Sun et al. GT2024-123845

[5] Liu., et al. Chinese Journal of Aeronautics 37.4 (2024): 243-255
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Crossing jets plane
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ϕprimary = 1.15 - ϕglobal = 0.85

Twall out = 350 K

Takeaway:

• Lower wall heat losses increase NH3 cracking → less NOx production in SS
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Conclusion

• Inverse diffusion-like combustion (ϕglobal = 0.85) is not desirable →

• High NO and NO2 production upstream the jets plane and post-secondary flame, respectively.

• NH3 and N2O may slip through the walls between jets

• Lower overall exhaust emissions with premixed-like (ϕglobal = 0.60) combustion in the secondary stage →

• Therefore, more desirable for NOx control with low N2O emissions and zero NH3 slip

• A non-negligible portion of total NOx (50% in some sampling positions) is composed of NO2 after the 

lean secondary combustion zone. Therefore, considering NO as the sole constituent of total NOx for NH3 

combustion is not recommended if a staged strategy, such as the RRQL system, is implemented

• NOx production in the secondary stage is higher for ϕprimary = 1.15 compared to ϕprimary = 1.13 → higher 

NH3 concentration available from the primary stage

• Reducing the wall heat losses reduces the unburned NH3 concentration drastically → enhancing the 

overall exhaust emissions with sub-10 ppm N2O concentrations 

Takeaway

Simultaneous tuning of primary and secondary stages, high jets’ 

momentum flux (low enough ϕglobal) to produce premixed-like 

combustion in the secondary lean stage and reducing wall heat 

losses are key parameters for an adequate NH3-RRQL system 

design in terms of exhaust emissions

St. George D: Novel Energy Systems (1K03) – 10:15

“Influence of wall heat losses and secondary stage geometry on 

exhaust emissions of an NH3 RRQL system. R. Cole, et al.”



• Primary zone geometry and flame shape mostly impacts the optimum 
primary zone equivalence ratio
• Residence time effects

• Wall interactions

• Important to tune primary zone equivalence ratio with secondary zone 
geometry
• Avoid inverse diffusion flames

• NO generated in primary zone, burns/converts to NO2 in secondary

• Cold walls promote ammonia and N2O slip along walls between 
secondary jets

39

Summary
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Questions? 
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