

Center for Advanced Turbomachinery and Energy Research (CATER)

Flame Speed Measurements of Ammonia-Hydrogen Mixtures

Gihun Kim, Louis Yovino, Michael Pierro, Ramees K. Rahman, Subith S. Vasu^{*} University of Central Florida

> Mark Winquist, Ganesan Subbaraman GTI Energy

> > **Rob Steele** Electric Power Research Institute

Ammonia Combustion Technology Group meeting 9/5/2023 (virtual) *Gihun.Kim@ucf.edu, subith@ucf.edu

Presented at the 2023 TurboExpo – GT2023-100998, also to appear in J. Engineering Gas Turbines for Power

Motivation

- **Experimental setup**
- □ Theoretical background
- Results and discussion

- CO₂ emission
 - Need to decrease
- Ammonia (NH₃)
 - NH₃ has higher volumetric energy density than H₂ and natural gas

	Properties	Ammonia	Hydrogen	Natural Gas
	Density, g/cm ³	0.77 (liq.)	0.071	0.187
	Ignition point, °C	800	400	650
	Low calorific value, kJ/kg	18,610	120,000	38,100
	Octane number	110	130	107
	Explosion limit (volume ratio)/%	16~28	4.5~75	5~15
	Energy Density, MJ/m ³	11.3	3.75	7.134
	Minimum Ignition Energy, mJ	680	0.02	0.32
TER	RI EPEI	CTI ENERCY solutions that transform	NU. EL 01. 2022	

- CO₂ emission
 - Need to decrease
- Ammonia (NH₃)
 - NH₃ has higher volumetric energy density than H₂ and natural gas
 - Cheaper than H₂

- CO₂ emission
 - Need to decrease
- Ammonia (NH₃)
 - NH₃ has higher volumetric energy density than H₂ and natural gas
 - Cheaper than H₂
 - Production, storage, transportation, and distribution

GTI ENERGY

https://www.dreamstime.com

- CO₂ emission
 - Need to decrease
- Ammonia (NH₃)
 - NH₃ has higher volumetric energy density than H₂ and natural gas
 - Cheaper than H₂
 - Production, storage, transportation, and distribution
 - Toxic, but easy to detect by the distinctive smell
 - Strong fuel candidate for gas turbines, and engines

Laminar burning speed

- Design internal combustion engine.
- Modeling turbulent combustion
- Validation of chemical kinetic mechanism

Challenges in Ammonia-Hydrogen Combustion

The current state of NH_3 - H_2 combustion research is insufficient to accurately predict its explosion characteristics

Inaccuracies exist in both the lean and rich regions for various mechanisms, necessitating reaction reduction for positively/negatively sensitive reactions

Greater knowledge of NH₃-H₂ combustion at higher pressures is needed to reach the design stage for turbine development

Source: S. Mashruk et al, 2022

Chemical Kinetic Modeling

- The preliminarily model developed by UCF has been updated.
 - **256** Reactions *currently under development*
- Reactions for ammonia pyrolysis have been included from literature (Baker et al. and Alturaifi et al.)
- Reactions added for NH2, NH, NNH, N2H2, N2H3, N2H4 and H2NN relevant to pyrolysis.

Rxn.no	Reaction	A	n	Ea
1	NH2+M=NH+H+M	1.20E+15	0	75950
2	NH2+H=NH+H2	6.92E+13	0	3650
3	NH2+NH=NH3+N	9.57E+03	2.46	107
4	NH2+NH2=NH3+NH	5.64E+00	3.53	522
5	NH2+NH2=N2H2+H2	1.74E+08	1.02	11783
6	NH2+NH2=H2NN+H2	7.17E+04	1.88	8802
7	NH+M=H+N+M	1.80E+14	0	74760
8	NH+H=H2+N	1.00E+14	0	0
9	NH+N=N2+H	3.00E+13	0	0
10	NH+NH=N2+H+H	2.50E+13	0	0
11	NH+NH=NH2+N	5.66E-01	3.88	342
12	NNH+NH=N2+NH2	5.00E+13	0	0
13	NNH+NH2=N2+NH3	5.00E+13	0	0
14	N2H2=H2NN	9.20E+38	-9.01	67727
	PLOG / 0.1	9.20E+38	-9.01	67727
	PLOG / 1.0	2.00E+41	-9.38	68452
	PLOG / 10.0	1.30E+45	-10.13	70757
15	N2H3+H=N2H2+H2	2.40E+08	1.5	0
16	N2H3+NH2=N2H2+NH3	9.20E+05	1.94	-1152
17	N2H3+NH2=H2NN+NH3	3.00E+13	0	0
18	NH2+NH2(+M)=N2H4(+M)	5.60E+14	-0.414	66
	LOW / 1.60E+34 -5.49 1987/			
	TROE / 0.31 1E-30 1E30 1E30/			
19	N2H4=H2NN+H2	4.00E+44	-9.85	71353
	PLOG / 0.1	4.00E+44	-9.85	71353
	PLOG / 1.0	5.30E+39	-8.35	69307
	PLOG / 10.0	2.50E+39	-8.19	69664
21	N2H4+NH2=N2H3+NH3	3.90E+12	0	1500
22	H2NN=NNH+H	3.40E+26	-4.83	46228
	PLOG / 0.1	5.90E+32	-6.99	51791
	PLOG / 1.0	9.60E+35	-7.57	54841
	PLOG / 10.0	5.00E+36	-7.43	57295

Mutlizone Combustion Model

Definition of laminar burning speed

$$\rho_u S_u = \frac{1}{A_f} \frac{dm_b}{dt}$$

Bradley & O'Donovan et al. flame radius derivation

$$R_f = R_0 \left(1 - (1 - X) \left(\frac{P_i}{P} \right)^{\frac{1}{\gamma}} \right)^{\frac{1}{3}}$$

Generalized combustion model using flame radius and pressure data

$$S_u = \frac{R_0^3}{3R_f^2} \left(\frac{P_i}{P}\right)^{\frac{1}{\gamma}} \frac{dX}{dt}$$

Combustion model

Single Layer $S_u = \frac{R_0^3}{3R_f^2} \left(\frac{P_i}{P}\right)^{\frac{1}{\gamma}} \frac{dX}{dt}$

Linear model

$$X = \frac{P - P_i}{P_e - P_i}$$

P_i: Initial pressure *P*: Instantaneous pressure *P_e*: Estimated peak pressure

Combustion model

• Experimental conditions

Synthetic air		Initial conditions		Fuel
Oxidizer	Diluent	Temperature	Pressure	
0 ₂	He/Ar/N ₂	296 K	5 atm	NH ₃ /H ₂
1	variety			

• Synthetic air details

/山			
/ n ₂	1/0	0.5/0.5	0.7/0.3
O ₂		1.0	
N ₂	1.0		
Ar	1.5	0	0
Не	0	1.5	3
	O2 N2 Ar He	O2 N2 Ar 1.5 He 0	O2 1.0 N2 1.0 Ar 1.5 He 0

428K and Equivalence ratio of 1.3

1 atm

2 atm

10 atm

High pressure experiment - challenges

 $\phi = 1.3$ with N₂ and He

 $\phi = 1.3$ with N₂

ATER

Experimental setup

- Setup are in the fume hood
- Exhaust line is connected to exhaust valve of building
- Schlieren image setup also is in the fume hood
- High speed camera is at outside the fume hood.

LCRI LOW-CARBON

Experimental Validation:

Schlieren imaging was used to visualize the flame surface during kernel development and validate optimum oxidant conditions

The Schlieren images validate the following assumptions in our combustion model:

- Flame is smooth and thin
- No buoyancy forces present
- The flame is spherical in nature

FLAME PROPAGATION VIDEO FOR H₂-ENHANCED NH₃ USING CUSTOMIZED OXIDANT MIXTURE

Experimental Validation:

Pure H_2 was ignited in air at room temperature and 1 atm to validate the experimental setup and combustion model

 The UCF NH₃-H₂ mechanism accurately predicted experimental LBS values for pure H₂ ignition

LBS OF H₂ IN SYNTHETIC AIR AT R TEMPERATURE AND 1 ATM

Effect of H₂ Addition to NH₃:

The flame speed was increased significantly with H₂ addition. Laminar flames were achieved using the customized oxidant prepared prior to experimentation

Chemical-Kinetic Mechanism:

The UCF NH_3 - H_2 mechanism shows increased underprediction of the LBS in the lean region with increased H_2 concentration

LBS OF ALL NH₃ IGNITIONS AT 296 K AND 5 ATM

Pure NH₃ Flames:

The maximum laminar burning speed (LBS) for pure NH_3 ignitions was determined to be 0.2 m/s at stoichiometric conditions ($\phi = 1.0$)

Chemical-Kinetic Mechanism:

The UCF NH_3 - H_2 mechanism accurately predicted LBS values for pure NH_3 flames. The model overestimates the LBS values in the fuel-rich region

LBS OF PURE NH₃ IN SYNTHETIC AIR AT 296 K AND 5 ATM

0.7

H₂-Enhanced NH₃ Flames (70/30):

The maximum laminar burning speed (LBS) for 70% $NH_3 + 30\% H_2$ ignitions was found to be 0.5 m/s at stoichiometric conditions ($\phi = 1.0$)

Chemical-Kinetic Mechanism:

The UCF mechanism developed for this investigation accurately predicted experimental LBS values for those in the fuel-lean region

LBS OF 70% NH₃ + 30% H₂ IN SYNTHETIC AIR AT 296 K AND 5 ATM

H₂-Enhanced NH₃ Flames (50/50):

The maximum laminar burning speed (LBS) for 50% $NH_3 + 50\% H_2$ ignitions was found to be 0.6 m/s at stoichiometric conditions ($\phi = 1.0$)

Chemical-Kinetic Mechanism:

The NH₃-H₂ mechanism developed for this study underestimated LBS values for the fuel-lean region.

GTI ENERGY

Ongoing work – 10 atm experiment strategy

Need to check condensation of NH₃

- NH₃ wavelength w/o interference
- 1.55 μm

GTI ENERGY

Ongoing work – 10 atm experiment strategy

- Constant Pressure method
 - Extraction image from video
 - Find edges with Edge Detector
 - Find flame and calculate radius
 - Calculate unstretched burning speed with radius
 - Convert to Laminar burning speed ($S_u = \rho_b / \rho_u \cdot S_0$)

CVM

(m/s)

0.350

0.576

phi

0.70

0.91

CPM

(m/s)

0.345

0.563

Difference

(%)

1.61

2.29

Acknowledgements

- The authors thank the Low Carbon Research Initiative (LCRI) for funding this work under GTI Project No 23034. Partial support from UCF is also acknowledged.
- Project is continuing with DOE funding (GTI Energy prime recipient)

Contact Dr. Gihun Kim <u>Gihun.Kim@ucf.edu</u> Prof. Subith Vasu: *subith@ucf.edu*

