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Heat recirculation 
through solid matrix:
• Pre-heats fresh reactants
• Increases the flame speed

Applications in:
• Gas turbines
• Domestic boilers
• Radiant industrial heaters

Porous media combustion

Ellzey et al., Prog. Energy Combust. Sci. 72 (2019).
Wood and Harris, Prog. Energy Combust Sci. 34 (2008).
Trimis and Durst, Combust. Sci. Technol. 121 (1996).
Sobhani et al., Proc. Combust. Inst. 37(4) (2019).Fuel/air
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Porous media combustion

Reduction in CO, NO, unburnt fuel

Combustion of ultra-lean fuel/air mixtures

Fuel-flexible  operation

Extended power modulation

No thermo-acoustic instabilities

Low noise emission

Key concept: Internal Heat recirculation by 
heat-conducting solid-ceramic matrix
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Benefits of porous media combustion
Thermodynamic cycle analysis
§ Replace primary combustion zone with PMC
§ Extended lean flammability limit 

èIncrease compression ratio
èincrease thermal efficiency by 20%
èreduce emissions of NOx by 50% 

Siemens SGT-100
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Engine Performance Improvement,” Applied Energy, 2020
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Why PMBs for ammonia?

Heat recirculation through solid 
matrix [2,3]:
§ Pre-heats fresh reactants
§ Increases the flame speed
§ Enables very lean/rich combustion
› Reduced pollutant emissions
› Improved thermodynamic efficiency [4]

[1] Lhuillier et al., Fuel 263 (2021).
[2] Ellzey et al., Prog. Energy Combust. Sci. 72 (2019).
[3] Masset et al., Combust. Theory Model. 25 (2021). 
[4] Mohaddes et al., Energy 207 (2020).

[1]
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Why PMBs for ammonia?
Computational design optimization Tailoring porous-ceramic foams 

Triply-periodic minimal surfaces: control of 
topology and material properties 

Additive Manufacturing Ceramics
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Experimental setup: Interface stabilized PMB

Trimis, Durst, Combust. Sci. Technol. 121 (1996). 
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Extended flame stabilization

• Results for a 𝑥!"! = 0.7, 𝑥"" =
0.3 mixture

• Extended stability region, from:
§ Lean: 𝜙!"# = 0.55
§ To rich conditions: 𝜙 = 1.4

• Turndown ratio greater than 15:1
• Power density up to 62 MW.m-3

§ Estimated 5 to 24 MW.m-3 for swirl 
flames at atmospheric pressure
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Extended flame stabilization: pure NH3 operation

𝑥!"$ = 0.7, 𝑥"% = 0.3 𝑥!"$ = 1
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0D reactor network for PMB

YZA YZA SiC SiC SiC

7 continuously stirred reactor network model extended with 
interphase (solid-gas) heat transfer
§ Reaction mechanism by Stagni et al., Reac Chem Eng 5(4), 2020.
§ Interphase heat transfer (Bedoya et al., Combust Flame 162, 2015)
§ Effective material properties computed from x-ray tomographies
§ Inter-reactor heat transfer including radiation and conduction
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Burner pollutant emissions and model validation

• Results for 𝑚̇!! = 0.3	kg. m"#. s"$

• The reactor network model captures NO emissions to good accuracy.
• Model breaks for weakly stabilized flames in the very lean region.
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Exhaust composition in the rich regime: H2/NH3 ratio

𝜙 = 1.2• High conversion of NH3 to H2 in rich conditions
• 𝜙 = 1.2: a ~100 K difference in burner temperature 

explains the lower consumption rate of NH3 and presence 
of unburnt in the exhaust stream (reactor network)

𝑚̇!! = 0.3	kg.m"#. s"$
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Exhaust composition in the rich regime: NO emissions

𝜙 = 1.2
• Constant mass flux: 𝑚̇!! = 0.3	kg. m"#. s"$

• Fast decrease of NO emissions with increasing 𝜙
• Emissions systematically lower for pure NH3
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• 2 factors combine to explain lower NO emissions for the 𝑋%&!:
• Lower NO formation rates in the flame region
• Unburnt NH3 and NH2 in the post-flame region 
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Emissions at rich conditions: effect of mass flux

• Mass flux has a small influence on pollutant emission
• Increasing reforming efficiency with increasing mass flux
• Increasing NO emissions correlated with increasing operating temperatures
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1D simulation framework
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1D simulation framework

• 1D simulations can capture the experimentally determined stability limits of 
the burner when accurate constitutive relations are used.

• Pollutant emissions are also captured well.
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1D simulation framework

Accurate constitutive relations 
from processed μCT scans.

Literature correlations for 
constitutive relations.
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1D Simulations 
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1D Simulations 
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Conclusions

Demonstrated first porous media 
burner for pure NH3 combustion.
Characterized NO, NH3 and H2 emissions:
› In rich condition: most unburnt gases in the 

form of unburnt H2

› Unburnt NH3 highly dependent on burner 
operating temperature

Introduced a reactor network and a 1D 
model with interphase heat transfer that 
captures emissions and stability to 
acceptable accuracy
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