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Comprehending the MOT for N, to NH,

Wnsists of one sigma and two pi bonds
d is formed by head on overlap while pi bonds result from lateral overlap of
atomic orbitals
We sigma bond and LOMO is pi antibonding orbitals \

Why N, activation is a challenge?
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Reactivity of Metal Nitrides

N, is largely inert at room temperature (~25°C). However, it reacts with certain metals at elevated
temperatures.

The reactivity varies: Li reacts with N, at 250°C, while alkaline earth metals like Mg react
rapidly at temperatures above 500°C.
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Implementing Mediated NH; Synthesis
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Implementing Mediated NH; Synthesis

Li Electrodeposition
Li*(or) + € Li

Li Nitridation

6Lig) + Ny —> 2LisN(

Li;N Protolysis
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LizN() + 3HX 401 > NHsgor) + 3 LiT(so1) + 3Xs01)

Li Protolysis

2Li(s) + 2HX(SO|') — Hz(g) +2 Li+(so|.) + 2X'(SO|')

The two cycles must
remain in harmony with
each other; otherwise,
any imbalance will result
in limiting behavior
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Understanding Theoretical Activity Descriptors for MediatedNH; Synthesis

T to achieve ry,dissoc. = 1571 /K
1

5x 10~ 781300 1 621 1160

Stability of surface N vacancy in the
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Apart from Li, Ca and Mg also satisfy
the criteria to be substitutions for

mediated ammonia synthesis
Prof. Gauthier, TTU  Dr. AR Singh g/ COLLEGE OF

ENGINEERING




Li-Mediated Ammonia Synthesis =2
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Parameters that Affect Solid-Electrolyte Interface (SEI)

Modified Autoclave Electrochemical Reactor for High Pressure
Experiments

Optimization of Process Conditions

Li Salt and Li Deposition
Concentration Substrate

Solvent ' Proton Donor Type

and Concentration

N, - Switching o,
Pressure L Time Content
Cell Reaction
Potential Time

Role of Solid Electrolyte Interface

(SEl) and Composition of SEI

Current Density (mA/cm?)

Current Collector:
Cu wire

-50+

-100

-150

Cathode: Ni foam

—

0

Glass Vial
Resting
Phase
;Workin
Phase |
100 200 300 400
Time (s)

500

Anode: Planar Pt

Electrolyte

Switching current

strategy

CHEMICAL
ENGINEERING
COLLEGE OF
ENGINEERING

X
m
=
m
=
>
o
—
m
>
<
<
@)
=
>




Benchmarking Experiments and Effect of Different Proton Donors

6 bar N, Pressure, 0.065 M EtOH Concentration, LiClO,
Switching Current Strategy (2 min, 2 min)
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Proton Donor Methanol Ethanol 1-Propanol Butanol 1-Pentanol
pKa 15.5 15.9 16.85 17 16.84

*Note: pKa values are for aqueous systems

NH; Selectivity is
independent of the
total cell potential

Is there a trend or
correlation between
NH; FE and pKa of

donor?
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Effect of Pressure and Proton Donor
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Improving FE beyond 35% =
2
rm

LiBF, is shown to give a better performance, ;§>
as the stability of SEl increases with increasing anion size o
rm
>
Optimal Conditions | | 1% ‘ %
 20barN, << -100; 1 %
Pressure — 60} | 8 S
s < .75} ]
» 0.065 M EtOH w E
e -150 mA/cm2 40¢ 1 8 -s0f ]
*+  2min,2min = I 4 I
20} ] 25} ]
oL— : - : - . ' ‘ ‘ '
o 1 2 3 4 5 L R A

LiBF, Concentration (M) LiBF, Concentration (M)

70 % NH, FE and ~-100 mA/cm? NH; CD using 3 M LiBF,
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Energy Efficiencies

Energy Efficiency = Voltage Efficiency x Faradaic Efficiency
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Several Ways to Report Energy Efficiencies

Equilibrium Potential (NH,/N,, HX)
Cell Voltage (N,,HX/NH,)

Voltage Efficiency =

-— H2 =
H,0
- - - - EtOH

X
m
=
m
=
>
o
—
m
>
<
<
@)
=
>

Theoretical Maximum = 39% (Non-Circular)
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Exploring Calcium as a mediator for NH; Synthesis =5
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At higher currents, like -30mA/cm? NMR quantification, isotope
and -45 mA/cm?, the cell voltage labelling, and control studies
increases rapidly which can confirmed that ammonia is

electrochemically degrade solvent forming from N, and not because
and form unstable SEI of contamination.
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Published in ACS Energy Letters

Ener
Efiérgy

http://pubs.acs.org/journal/aelccp

Metal Nitride as a Mediator for the
Electrochemical Synthesis of NH,

Ishita Goyal,# Nishithan C. Kanjj# Samuel A. Olusegun, Sreenivasulu Chinnabattigalla,
Rajan R. Bhawnani, Ksenija D. Glusac, Aayush R. Singh,* Joseph A. Gauthier,* and Meenesh R. Singh*

Cite This: ACS Energy Lett. 2024, 9, 41884195 I: I Read Online
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Exploring Mg as a mediator for NH; Synthesis =5
=
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Exploring Mg as a Mediator

Magnesium-mediated NH, synthesis
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Current Density (mA/cm?)

NH; Partial Current Density, (mf\/cmz)

Performance of Mg-MAS System
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Publication in Advanced Science

RESEARCH ARTICLE

ADVANCED
SCIENCE
[Open jices-}

www.advancedscience.com

Magnesium-Mediated Electrochemical Synthesis of

Ammonia

Ishita Goyal, Vamsi V. Gande, Rajan R. Bhawnani, Rebecca Hamlyn, Ahmed A. Farghaly,

and Meenesh R. Singh*

Metal-mediated electrochemical synthesis of ammonia (NHj;) is a promising
method to activate N, at room temperature. While a Li-mediated approach has
been optimized to produce NH, at high current density and selectivity, Li’s
scarcity and its highly negative plating potential limit scalability and energy
efficiency. Alternative mediators have been proposed, but only Ca has shown
some promise, achieving ~50% Faradaic efficiency (FE), though requiring
voltages beyond —3 V. Here, we report a Mg-mediated nitrogen reduction
reaction (Mg-NRR), where N, is activated on Mg to form Mg;N,, followed by
protolysis to release NH, and regenerate Mg. A notable NH; FE of 25.28 +
3.80% is achieved at a current density of —45 mA cm~2, corresponding to an
NH; partial current density of —11.30 + 1.77 mA cm~2 under 6 bar N,.
Isotope-labeled experiments confirm that NH; originates from N, with
similar FE (25.15 + 1.01%). Importantly, NH; production is demonstrated at a
total cell potential as low as —3 V. This Li-free Mg-NRR system offers key
advantages, including lower energy input and use of earth-abundant
materials, making it a scalable route for sustainable NH; synthesis.

nearly 100%, achieved through the use of
imide-based Li salts.”! Additionally, current
densities as high as ~—700 mA cm~2 have
been reported. Fu et al.'® advanced this
method further by developing a continuous
flow process, achieving a 61% NH, FE via
hydrogen oxidation on a Pt-Au alloy anode.

Despite these advancements, Li-NRR still
suffers from poor energy efficiency, sub-
stantially lower than that of the traditional
Haber-Bosch process,®! primarily due to
the highly reducing electroplating poten-
tial of Li (=—3.04 V versus SHE).]*l More-
over, the long-term stability of Li-NRR at
higher current densities is compromised
due to the electrolyte degradation, which
impairs Li recovery, and the high cost of Li
salts makes the process economically un-
feasible. Selecting a metal with a lower re-
ducing electroplating potential could sig-
nificantly enhance energy efficiency. These
limitations underscore the need to explore

1. Introduction alternative metal-mediated systems that can offer improved sta-
bility and cost-effectiveness.
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Comparison of LiIMAS, CaMAS, MgMAS 2o
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