

حامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

1

Experimental study of canonical flames for new insight on ammonia combustion

Presenter: Gaetano Magnotti **NETL Ammonia Combustion Seminars**

Acknowledgement

The need for the green energy transition

- Combustion has enabled society as we know it
	- Industrial and agricultural revolution possible thanks to energy from fossil fuel
	- Massive anthropogenic release of CO2 in the atmosphere
- Epochal shift needed to limit global warming
- **Stated Policy Scenario** (STEPS) will lead to an unacceptable 2.4 ℃ by 2100
- Announced Pledges Scenario will limit increase to 1.7 ℃
- Net Zero scenario is what we truly need, but no policies are currently in place to achieve it.

Renewable sources for "carbon-free" energy

- Share of renewable sources in the energy mix will increase in the next decades
- Renewable sources are intermittent
	- Curtailment or storage needed if sized for peak demand

The hydrogen economy

- Battery suitable for daily fluctuations
- Storage in chemical bonds (e-fuels) provides greater flexibility
	- Excess energy as a commodity to exchange on the global market
	- Hydrogen and ammonia as energy carriers
- industrial machinery, industrial sector, and Route to decarbonize heavy duty transportation (road, locomotive and marine), aviation

Ammonia as energy carrier

Ammonia combustion challenges

- Very low-flame speed, hard to ignite and sustain
- Strong turbulence-chemistry interaction
- Chemistry not fully understood
- NOX at engine relevant conditions
- \bullet H₂ introduce by partial cracking leads to strong preferential diffusion effects

Ammonia research activities at KAUST

Mani Sarathy

- Comprehensive chemical kinetic model development
- Computational chemistry for ammonia/hydrocarbon combustion **Gas Turbine**

• Key species time history and reaction rates

Ammonia research activities at KAUST

Ammonia research activities at KAUST

10

Magnotti, Guiberti, Lacoste , Dally, Roberts, Lacoste, Im

 0.007 N H₃ 0.007 N H₃

Lamin **flames**

Turner, Magnotti

- Ammonia combustion in heavy duty ICE
- Pre-chamber assisted combustion

ICE and gas Turbulent turbines flames Lifted
Cylinder

Guiberti, Roberts

Conversion of micro-gas turbines

Canonical flames

- Simple configuration
- Relevant to practical applications
- Designed with validation of numerical models as target
- Well defined boundary conditions
- Coupled to state-of-the-art laser diagnostics
	- Raman/Rayleigh scattering for Temperature and major species
	- Quantitative LIF for minor species
	- Velocity and boundary conditions
	- High-quality dataset providing insight in the physics and validation to numerical models

Ammonia combustion challenges

Key phenomena to be investigated

Stabilization, *local extinction*, blowout

- *NO^x formation and emissions*
- *Differential diffusion effects*

Pressure effects

Selection of turbulent target cases

Computationally accessible geometries with well-defined bc's and inflows Large variety of burners already available that can be operated with ammonia

Collaboration on experimental design, common burners, comparison with simulations

Measurement needs and diagnostic challenges

Extend Raman methods to ammonia/hydrogen flames

Combine with quantitative measurements of NO, OH, NH, NH₂

Raman and NH² LIF for ammonia flames

Why Raman/Rayleigh scattering for reacting flows

- Raman/Rayleigh scattering is an essential tool in the study of turbulent reacting flows
	- Non intrusive
	- Spatially (\lt 100 μ m) and temporally (\lt 500 ns) resolved
	- Non-resonant (no need to tune to a specific wavelength)
	- All species excited simultaneously with a single laser beam
	- Mixture fraction, atom ratios, scalar dissipation
- Coupled with LIF for quantitative measurements of minor species
	- Temperature and bath-gas composition

Matrix inversion for ammonia flames

- $NH₃$ has a very rich spectrum
- The matrix inversion approach requires only knowledge of the elements of the C-matrix
- No detailed knowledge of the spectra needed
- Response curves of ammonia on all other channels determined empirically
- Tang et al CNF Vol 244 2023 • Additional column to remove effects of fluorescence interference

Empirical approach to ammonia response curves

- Counterflow burner accessible along centerline
- Entire thermochemical structure captured on a single shot basis
- Installed in KAUST HPCD and operated at 5 bar
- Platform to calibrate and characterize laser diagnostics at elevated pressure and temperatures
- Counternow name • Several counterflow flames tested varying composition and strain rates
- Chemkin 1D simulations to calibrate/validate experiments

Validation and accuracy/precision estimates

- Calibrated using 2 counterflow flames
- Validated over additional 13 flames without any tuning of the parameters
- Mole fractions within 0.01
- Temperature within 40 K
- Coefficient of variation ranging from 0.3% to 3%
- Higher standard deviation near peak fluorescence interference

Tang et al. Combustion and Flame Volume 237, March 2022, 111840

Source of fluorescence interference

- A single, temperature dependent response curve can correctly remove the fluorescence over a wide range of conditions
- Possibly a single species gives the most significant contribution
- $NH₂$ shows surprisingly good agreement
- Other possible contributions may come from $NO₂$ and $N₂O$

Tang et al. Combustion and Flame, Vol. 250, April 2023, 112639

King Abdullah University o Science and Technology

Source of fluorescence interference

- Experiments in flows seeded with NO, and N_2O , show negligible contribution from these species
- $NO₂$ has a 10 times weaker contribution, and only appears at low temperature
- Experiments in $NH₂$ created from photolysis of NH₃, shows a striking similarity with the recorded spectrum

Source of fluorescence interference

بامعة الملك عبدالله للعلوم والتقنية King Abdullah University o Science and Technology

- Linear with number density.
- Calibrated by matching the peak $NH₂$ concentration from 1counterflow flame using the Otomo mechanism
- Accuracy < 10% over 23 flames tested, across all range
- \sim 100 ppm standard deviation at peak temperature, ~ 50 ppm elsewhere
- Small crosstalk from $NO₂$ (<50 ppm)
- Absolute, independent measurements needed (TDLAS?)
- Useful for turbulent-chemistry interaction studies

Tang et al. Combustion and Flame, Vol. 250, April 2023, 112639

22

Improving NO predictions

Improving NOX prediction

- Ammonia chemical kinetics models are still under development
- Large discrepancy among models on predictions of key radicals
- Models often tuned to match global parameters (ignition delay time, laminar flame speed,…)
- Detailed experimental data needed for mechanism development

KAUST CF flames

- 1D quantitative Raman/LIF of major species, temperature and NO
- NO excitation at 235.85 nm to avoid $NH₃$ absorption
- Operated in the saturated regime
- Full thermochemical structure for each laser shot
- Comparison in mixture fraction space to minimize sensitivity to boundary conditions
- Large dataset of 15 counterflow flames made available to modelers.

Tang et al. CNF, 267, 113556, 2024

Calibration

- 1D quantitative Raman/LIF of major species, temperature and NO
- NO excitation at 235.85 nm to avoid $NH₃$ absorption
- Operated in the saturated regime
- Full thermochemical structure for each laser shot
- Comparison in mixture fraction space to minimize sensitivity to boundary conditions
- Large dataset of 15 counterflow flames made available to modelers.

NOX in premixed flames

Tang et al. CNF, 267, 113556, 2024

Experiments show NO concentration in between models for non-premixed flames

28

NOX in non-premixed flames: effect of strain

- Small effect of strain
	- ~20 K on Temperature
	- NO increase by 162 ppm (% 6%)
- **Models**
	- Greatly overestimate (35-40%) the NO peak values
	- Underpredict NO in the rich region
	- Correctly predict the observed trends in T and NO

NOX in non-premixed flames: N2 addition

- N₂ addition:
	- Temperature drops from 2160 K to 2023 K
	- NO increase by 50 ppm $(-2%)$
- Models
	- Correctly predict temperature variation
	- Similar trend in NO increase (1.5%-2.5%)
	- Peak NO overestimated by 42%.

NOX in non-premixed flames: H2 addition

- Qualitative trend captured, with NO decreasing with H_2 addition
- NO peak overestimated by all models
- NO underestimated by all models in the rich region

NOX in non-premixed flames: summary

- Models overpredict peak NO
- Models underpredict NO in the rich region
	- Width of the NO profile in mixture fraction is underestimated

Ammonia turbulent jet flames

Ammonia canonical jet flames

Turbulence-chemistry interactions, differential diffusion effects,…

50% N² Dilution

Sandia piloted flame operated with partially cracked ammonia

Sydney inhomogenous burner with $\mathsf{NH}_3\mathsf{/H}_2$ as fuel 10% NH₃ 40% NH₃

 \mathbf{D}

Bluff-body stabilized ammonia/hydrogen burner

Laminar and turbulent cracked ammonia/air jet flame at high pressure

- Simplest canonical flame
	- 4.58 mm inner diameter
	- 150 mm air co-flow
- Two compositions
	- $NH_3:H_2:N_2=76:18:6$ by Vol.
	- NH₃:H₂:N₂=56:33:11 by Vol.
- Operated at 5 bar in KAUST High-pressure combustion duct
- Reynolds number of 2500 and 11000
	- *Raman for temperature and major species*
	- *Quantitative NO-LIF*
	- *2D velocity field from PIV*

King Abdullah University

Laminar flames results at Z/D=1

- Major species in good agreement with the full multi-component transport model
- Non-unity Le effects leading to super-adiabatic peak temperature
- $H₂$ burns ahead of the ammonia leading to a rapid increase in the NH₃/ H_2 ratio

Tang et al. Experimental Thermal and Fluid Science Vol. 149, Nov. 2023

Differential Diffusion parameter

- Diff-Diff parameter based on atom-ratios to better capture diff-diff effects
- *N* replaces *C* in the conventional definition
- $\delta_z = Z_H Z_N$
- Z_{x} is the elemental mixture fraction:
- $Z_H =$ $Y_H-Y_{H,air}$ $Y_{H, fuel} - Y_{H, air}$
- $Z_N =$ $Y_N-Y_{N,air}$ $Y_{N, fuel} - Y_{N, air}$
- Correct trend captured in Z_H , some issues in Z_N
- Small denominator in Z_N (0.05) amplifies Small denominator in Z_N (0.05) amplifies
measurement errors

Differential Diffusion parameter in turbulent flames

- Diff-diff parameter indicates that differential diffusion is important up to 15 diameters
- **Improvements** needed to obtain lower uncertainties

NH³ /H2 ratio in turbulent flames

- NH₃/H₂ ratio affected by preferential diffusion
- For laminar flames, excellent agreement with the calculations when including multi-component transport
- For turbulent flame
	- Intermediate solution between multi-component and Le=1 at $Z/D=1$
	- NH_{3}/H_{2} larger than simulations for $Z/D=20$
	- Good match with Le=1 results when matching the fuel composition
	- Diff-diff effects acting near the nozzle, affect the NH $_{3}$ /H $_{2}$ downstream

Turbulent flames: mixture fraction space

- Temperature profile matches the full multidiffusion simulation near the exit, and the Le=1 downstream
- Evidence of localized extinction for the CAJF14 flame (40% of blowoff velocity)
- Full burning probability: fraction of samples near stoichiometry (0.12 < ξ < 0.16) with T > 1500 K
- Different flame series needed to study extinction

Cracked ammonia piloted flames

معة الملك عبدالله King Abdullah University o Science and Technology

- Three partially premixed piloted jet flames
- Sandia piloted burner
- Raman/Rayleigh+OH LIF
- Fuel: Simulated partially cracked ammonia (43%), and air with $\Phi = 3$
- Pilot jet: Simulated partially cracked ammonia (43%), and air with $\Phi =$ 0.9 520W
- Three Reynolds numbers
	- Flame D Re=24000 (59% Exctintion Re)
	- Fleme E Re=32000 (79% of extinction Re)
	- Flame F Re=36000 (89% of extinction Re)

Cracked ammonia piloted flames

- Laminar flame structure from counterflow flames
- Three peaks of heat release identified
	- A peak near $\zeta = 0.75$ from the premixed, stratified region
	- A peak near $\zeta = 0.5$ corresponding to the peak temperature
	- A peak near the OH peak
- For unity Lewis number
	- Reduced heat release near the peak of OH
	- Increased heat release near stoichiometric mixture fraction

Tang et al. PROCI 2024 in press

Ammonia piloted flames: near field

Small differences between Flame D and F at z/D=1. Intermediate between unity Le and full multi-component simulation

• At $z/D=2$ local extinctions starts on lean side. Note drop in OH, and NH₂, and the appearance of NH $_3$ and H $_2$ for lean mixture fracti<u>ons</u>

> *Tang et al. PROCI 2024 in press*

• z/D=10 continues to show extensive localized extinction

Analysis of local exctinction

- Extinction probability computed based on the mixture fraction corresponding to the OH, T and NH₂ peak
- Zone 1: OH concentrations below 1500 ppm for ξ=0.38
- Zone 2: temperature below 1100 K for ξ=0.48
- Zone 3: NH_2 -LIF intensity below 400 counts for ξ=0.60
- Extinction and re-ignition start from the lean size (zone 1) and propagate to the rich side

Comparison with CFD simulations

- TNF Jul1 19-20 2024 Milan
- 7 Contributing groups, 8 datasets
- Flame D and F simulated and compared to experimental results

حامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

W

Loughborough
University

Imperial College

.ondon

University of **Stuttgart**

Canonical flames for ammonia combustion

- Novel optical diagnostics for ammonia flames
	- Raman/Rayleigh scattering extended to ammonia flames
	- Semi-quantitative $NH₂$ measurements with 532 nm excitation
	- Coupling with LIF for quantitative NO and OH
- Detailed measurements in counterflow diffusion flames reveal systematic discrepancy with predictions
- Canonical turbulent flames for model validation
	- High-pressure, turbulent jet flames highlight role of differential diffusion
	- Piloted jet flames to study localized extinction and re-ignition

Extending to atmospheric pressure flames

- Measurements in counterflow diffusion flames to assess accuracy and precision
- In methane flames fluorescence from C2 and PAH
- Single interference channel cannot describe the entire flame

حامعة الملك عبدالله

1-component vs Polarization-separation: ammonia

- Wavelet adaptive thresholding and reconstruction algorithm for improved precision
- For ammonia flames both 1 component and polarizarationseparation approach lead to accurate results

حامعة الملك عبدالله

1-component vs Polarization-separation: CH4/NH3

Inter./(N₂ in air)

 0.1

 0.05

 $\bf{0}$

 $AM1$

 $AM2$

 \blacksquare

 0.5

 $0.5 - 1$

 0.2

 0.1

 Ω -0.1

 $\mathbf{0}$

 O^2

 0.5

 \blacksquare

 $\bf{0}$

(a). 2-component approach

 0.5

 $\overline{1}$

 $\bf{0}$

 $\mathbf{z}^{\prime\prime}$ 0.5

 0.2

 $\sum_{n=1}^{\infty}$ 0.1

- Large inaccuracies for the 1 component approach
- Improved precision in 2 component approach

 0.08

 0.06

 0.04

 0.02

 $\mathbf 0$

 0.5

 H_2

NO experiment and simulations

Wang et al PROCI 39 (1), 1465-1474 (2022)

Turbulent flames: radial profiles

- Mean and RMS data available for Z/D ranging from 1 to 60
- Differences in N_2 , H_2 and NH_3 from the different fuel composition
- Slightly enhanced O_2 decay for the higher cracking ratio

Tang et al. CNF 2022

Turbulent flames: radial profiles

- Slightly higher mean temperature and water concentration for the flame with higher hydrogen content
- More insight from analysis in mixture fraction space

Turbulent flames: diff -diff effects

- Ammonia and hydrogen profiles plotted vs temperature
- Profiles intermediate between unity Le and the full multi -component diffusion
- H2 mole fraction drops below both solutions moving downstream
- Diff -diff effect although stronger near exit is cumulative
- NH3/H2 ratios increases with distance from the exit

