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INTRODUCTION
Objectives

➢ Objective – Define optimum operating 
conditions for the design of an Ammonia 
Combustor that is most competitive and 
provides a stable combustion 
environment

➢ Design goals and criteria

➢ Complete burnout of fuel

➢ Minimize NOx emissions at 
combustor exit

➢ Stable conditions – Low 
thermoacoustic vibrations

➢ Reduced cost (capital cost, operating 
costs, maintenance, etc..)
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Seasonal Storage

 Chemical Energy Storage (Power to Gas), offers long-term large-scale 
energy storage independent from geographical and geological constrains 

Problem
Limited & Costly Long Term Energy Storage

Source: Valera-Medina, Agustin, et al. “Ammonia for Power.“ Progress in Energy and 
Combustion Science [2018]: 63-102
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H2 → High Costs

NH3 → Difficult to Burn
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High storage and transport 

costs hinder Hydrogen’s 

use as an alternative fuel  

The advantages for ammonia.. Storage 

and transportation

▪ Liquefies at much warmer 

temperatures than hydrogen and 

LNG

▪ Ammonia infrastructure already 

exists for agricultural sector

Challenges for ammonia.. Combustion

▪ Less reactive than conventional 

fuels

▪ Low energy content

▪ Nitrogen-bound Fuel leading to 

high NOx emissions

Advantages Problem

Ammonia for Power
Potential Solution?
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❑ Ignition

❑ Flame Stability

❑ Low Emissions

❑ Translation to physical design

Challenges for Ammonia Combustor 

Ammonia Combustion
Challenges

❑ Burner Stabilization Method

❑ Equivalence Ratio

❑ Air Inlet Temperature 

❑ Pressure

❑ Residence Time

Parameters analyzed to address challenges
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Prototype Engine
NH3 Chemistry → Industrial GT Combustor
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SCOPE
Phase 1: Feasibility Study - Ammonia Combustion

➢ Stable ammonia flames 
- Reactants’ ignition method
- Flame equivalence ratios
- Hydrogen mass fraction if any?

➢ Burner and Combustor Concept
- One or two combustor zones
- Aero concept designs 
- Fuel and air flows

➢ Pollutants’ emission levels
- NH3 < 1 ppm
- NOx < 20 ppm (15% Excess O2)

➢ Combustor outlet conditions (mass flow and 
temperatures) to drive GT cycle

➢ Down-selection industrial Gas Turbine 



Ammonia Chemistry

&

Chemical Kinetics 

Calculations
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Laminar Flame Speed
1D Ammonia Combustion Simulations
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Radial Swirler Configuration:

1D Chemical Kinetics Simulations
UCICL Rig Modelling 

IN Premix 

Air/Fuel 

Mixture Z1 

IN Air Z2 

OUT

➢ Code: ANSYS Chemkin

➢ Chemistry: Mathieu 
Mechanism
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Fuel Rich Conditions

1 atmosphere

Influence of Preheat Temperature on NH3 
Burnout and NOx Formation 

Unburned Ammonia 

Fuel Lean Fuel Rich
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p = 1 atm p = 20 atm
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NOx emissions ~ 20 ppm

NOx emissions ~ 170 ppm
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Influence of Pressure on the formation of Hydrogen 
from NH3 under Fuel Rich Conditions

p = 1 atm p = 20 atm
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CONCLUSIONS
1-D Chemical Kinetics 

➢ For adiabatic conditions, fuel rich equivalence ratios result in low NH3 and NOx emissions for 
Z1 and Z2. 

➢ Inlet air temperatures have a relatively big influence on the combustion

• In Zone 1, with decreasing inlet air temperatures: Ammonia conversion becomes slower, 
which could be attributed to lower radical pool (O, H, OH) 

➢With increasing pressure: 

• Chemistry becomes faster end reach earlier steady state. 

• Less fuel-bound nitrogen is converted to NOx. 

• Less radicals are present (H, O, OH). 

• Optimum φ shift to richer conditions



CFD Simulations
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CFD Ammonia Combustion Modelling
Methodology

CFD Model

➢ Solver:  ANSYS Fluent 2020 R1

➢ Viscous Model: k-omega

➢ Chemistry: Mathieu Mechanism

➢ Species Model: Partially Premixed Combustion

  C Equation

  

➢ Flamelet Generated Manifold 

 (Premixed Flamelet)

Simulation Domain
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CFD Ammonia Combustion Modelling
Primary Zone Temperature
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CFD Ammonia Combustion Modelling
Primary Zone NH3 Destruction
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CONCLUSIONS
CFD Ammonia Combustion Modelling

➢ 3D CFD modeling was conducted using commercial code ANSYS FLUENT in order to assess the 
design of the 6 different burner configurations.

➢ All Test Rig (TR) configurations show stable flames with complete combustion in Zone 1 and 
Zone 2. 

➢ Newly-developed burner design (TR-03B) achieves the best results among all modelled
configurations. This could be attributed to the rapid mixing next to the fuel air mixture
injection point which is critical in achieving rapid ignition, rapid temperature rise and as a
result near full reduction of NH3.

➢ Certain burners show risk of flame impingement to the combustor wall.

➢ The three best performing burner designs based on the CFD results where then tested in the 
UCICL test rig. 



Lab-Scale 

Combustion Tests at 

UCICL
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Diagnostics
CFD Ammonia Combustion Modelling

➢ Emissions

▪ Horiba PG-250/PG-235

▪ Primarily for O2 measurement

▪ Horiba MEXA QCL-1400-NX

▪ NO, NO2, N2O, NH3

▪ Water cooled 0.25” extractive probe located
at exit of the 2nd stage

▪ Water dropout system

▪ Samples are on a dry basis

▪ Corrected to 15% O2 (measured O2 levels)
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Experimental Setup at UCICL
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NH3 Combustion Flames at 1 atm

• Observed Stable Combustion Flames

Lean PZ ~ Stoichiometric PZ

Stable Operation attained approaching LFL for NH3/Air
Allowed focus on 100% NH3 rather than NH3/H2 mixtures
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NOx Emission Levels from Ammonia Flames at 
One Atmosphere

Minimum NOx value achieved close 

to kinetic limit

Measured NOx emissions from the atmospheric laboratory scale experiment
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Kinetic Modeling Results Vs. Experimental Heat 
Loss 
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Phase II

High Pressure 

Combustion Tests

(Towards NH3 mGT)
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➢ Rig Designed to simulate ~1/2 engine cycle 
conditions:

• 100 kW steady-state thermal power

• 4 bar P3

• 1200 K T3

• Emissions sampling

• Acoustics probe  

➢ Concept built around standard 150 lb schedule 
40 pipe and flanges

• Excellent optical access to the flame 
zone (zone 1)

• Zone 2 is customizable modified for 
standard flanges

• Exit/Cooling sleeve allows rig preheating 
and partial quench

➢ Modular Sections 

• Changeable burner plate

• Changeable jet ring

• Separate feed for zone 1 and zone 2

• Separate heat for zone 1 and zone 2

UCICL High Pressure Combustion Test Rig
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Phase II Combustion Tests
Preliminary Results
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Phase II results for NO emissions at higher pressures are very encouraging 
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Prototype Engine Selection

➢ Relatively Small Engine Size (Advantageous for Decentralized Power).

➢ GT design should allow for easy modification/extension of the combustor 

section.

➢ Ideally the engine will be designed for external firing or has a single silo 

combustor.

➢ Combustor inlet air temperature should be as high as possible to facilitate 

ammonia ignition and flame stability.



Summary
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➢ The study conducted in Phase I demonstrated that although NH3 has very low flame speeds, it can be 
burned successfully

➢ NOx emission levels from the experiment show that they approach very closely what has been achieved in 
the kinetic modeling studies 

➢ High Pressures have very positive effect on reducing NOx emission levels in ammonia combustion systems

➢ High temperatures as well accelerate the preferential conversion of ammonia to N2 under fuel rich 
conditions

➢ The results show that it is highly feasible to burn NH3 in gas turbine applications

➢ Several challenges need to be overcome when using ammonia as a fuel in gas turbine applications; these 
include the following:

➢ Reliable startup of the engine
➢ Running up the engine while achieving low NOx and NH3 emission levels (prevention of the 

brown plume phenomenon)
➢ Reliability of cycling the engine between full and part load operation
➢ Proper cooling management of the combustor liners especially under high load conditions

➢ DOE awarded the second phase of the program to Creative Power Solutions to continue developing the 
ammonia gas turbine; this phase includes the design and testing of the combustor under real engine 
conditions

➢ The most recent results of phase II show that the new ammonia combustion system is able 
achieve very high flame stability as well as very low NOx and ammonia emissions.

Ammonia GT Combustor 
Summary
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