NATIONAL
TRANSPORTATION
RESEARCH CENTER

OAK RIDGE

National Laboratory

May 6, 2025

NH; Dual-Fuel Combustion
Emissions in a 4-stroke
Marine Diesel Engine

Ammonia Combustion Technology Group Meeting

Brian Kaul, Daanish Tyrewala, Scott
Curran, and Vitaly Prikhodko

Oak Ridge National Laboratory

f??’jﬁ% U.S. DEPARTMENT OF

I A ORNL IS MANAGED BY UT-BATTELLE LLC
?&@/ég‘ EN ERGY FOR THE US DEPARTMENT OF ENERGY

"




Acknowledgements

W, U-S DEPARTMENT OF
WENERGY

DOE VTO Program Managers: Kevin Stork and Gurpreet Singh

U.5. Department of Transportation
'./ Maritime Administration

DOT MARAD Program Managers: Galen Hon, Will Nabach

OAK RIDGE |}l amion

National Laboratory | RESEARCH CENTER

Co-investigators: Daanish Tyrewala, Scott Curran, Vitaly Prikhodko

Support from: Gurneesh Jatana, Derek Splitter, Jonathan Willocks, Scott Palko,
Steve Whitted, Jim Szybist, and Scott Sluder
[+ Martin Wissink, Chloé Lerin, and Jordan Easter formerly of ORNL ]

&

Tim Lutz, David Langenderfer, and team at Cummins for providing engine platform,
project guidance, and technical support for ISB/ISB-G

Geoff Scott, Joe Spakowski, and team at Phinia for providing ammonia compatibility

%

SN
- PHINIA testing injectors and technical support
EXonMobiI Willie Givens for providing lubricating oil and technical support
OAK RIDGE |}08%: 1m0

National Laboratory | RESEARCH CENTER




Why consider ammonia as a marine fuel?
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New liquid fuels are being introduced in the marine transportation
sector to meet international emissions reduction requirements
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Non-drop-in alternative fuels (e.g. ammonia, methanol) will be adopted
in dual-fuel engines with diesel pilot ignition

Biofuels can be suitable for operation in existing diesel
_ engines (e.g. drop-in)

\1/ - Other fuels under consideration generally don’t auto-
ignite well in compression-ignition (diesel) engines

Diesel pilot will effectively ignite pre-mixed or direct-
injected alternative fuels

Provides diesel fallback capability if ports don't have
alternative fuel available for bunkering

Bio-pilot fuels provide a path for meeting international CO, emissions reduction targets
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Ammonia has some challenges as an internal combustion engine fuel

Ignition Energy
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« Challenging fuel combustion properties Gy
« Doesn't readily auto-ignite: need CR > 30 to operate as diesel fuel £ 2]
» Low flame speed, high ignition energy: difficult to burn as spark-ignition fuel " ammoni Gasoline

« Emissions control questions
« Engine-out and aftertreatment-derived N,0 emissions o0 .
* High engine-out NO, and NH; emissions

Flame Speed

Laminar Flame Speed,
cm/s

Ammonia Diesel Gasoline
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Objective: experimentally evaluate ammonia as a fuel for inland and
coastal marine engines (including retrofits)
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Combustion Strategies NH,=H, Decomposition Emissions Controls
Catalysis
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Diesel-Pilot Spark Ignition Hydroge!

Experimental aftertreatment system

S— : - : o SCR: selective catalytic reduction
Cummins ISB Ammonia Synthetic gas flow reactors ASC: ammonia Sﬁp catalyst

6.7L engine PFl injectors
. /L J . y,

(Developing model validation data at a small scale that can be applied to all scales of engines
J
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Ammonia dual-fuel experiments were conducted on a single-cylinder
Cummins ISB with PFI NH; + DI pilot fuel

EGR Cooler ] D:(]
EGR
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Engine Specifications
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Ammonia dual-fuel direct injection strategies
Low-pressure dual-fuel engine (4-stroke) with direct injection pilot fuel
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Engine Mapping
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Mapping experiments for dual-fuel NH, provide insights into
opportunities and challenges for NH; combustion in 4-stroke engines
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Dual fuel ammonia: High N,O emissions at low loads where NH,
combustion efficiency is low

NH, Fuel %
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Dual fuel ammonia: High N,O emissions at low loads where NH,

combustion efficiency is low
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Dual fuel ammonia: High N,O emissions at low loads where NH,

combustion efficiency is low

Combustion Strategy Development

1 3 ] ‘ =
Diesel-Pilot Spark Ignition Hydrogen Assisted

Air-to-fuel ratio

Injection schedule

Modeling

NATIONAL
TRANSPORTATION
RESEARCH CENTER

%OAK RIDGE

National Laboratory

N,O [ppm]
172
16
157
14 142
12 126
O 111
2 10
c 96
L g
s 81
6 66
50
4
35
S T — 20

I ' 1 v 1 ' I ' 1 ' I i
1200 1400 1600 1800 2000 2200 2400
Engine Speed [rpm]

(N,O = 273x more potent GHG than CO,)



%

1)

Engine Mapping

OAK RID GE ?Qlll‘%i?)lﬁ TATION

National Laboratory | RESEARCH CENTER

Aftertreatment &
Emissions Impacts

Thermodynamic
Efficiency

15



Commercial SCR + ASC aftertreatment system has been installed

( Initial focus is on SCR (highest relevance to existing marine engines) )

Cu-based commercial Selective
Catalyst Reduction Setup (Umicore)

A,
Intake Intake > i1, Exhaust NH, = Exhaust = Exhaust
s Surge
tank

tank
| ASC-Out
SCR-IN Sample Point

Emissions bench
€0,,0,

Sample Point

SCR-OUT
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Selective catalytic reduction uses ammonia to reduce NO,

4NO + 4NH, + 0, — 4N, + 6H,0 (Standard SCR Reaction)

NH,
NO,

= 1 (Ideal stoichiometry)

Competing NH, Oxidation Pathways

2NH3 + 202 — Nzo + 3H20
4NH3 + 302 — 2N2 + 6H20
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Initial SCR results show potential for NO,, NH; abatement, depending
on operating conditions. Optimization needed.
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Ammonia dual-fuel direct injection strategies
Low-pressure dual-fuel engine (4-stroke) with direct injection pilot fuel

- PFI Ammonia
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Diesel-like n, and further reduction of N,O possible with richer [-pilot
and e-pilot conditions

1200 rpm, ~12.6 bar IMEP
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NO, reduction without significant NH; slip over an SCR requires
optimization; reduced N,O formation at A <1.6

1200 rpm, ~12.6 bar IMEP
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With early pilot strategy, optimization of the NH,/NO ratio may be
achieved at lower NH, substitution levels

1200 rpm, ~12.6 bar IMEP
83% NH; substitution, e-pilot
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NH; dual-fuel combustion impacts engine-out criteria emissions:
aftertreatment needed
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ISBC (g/kW-h)

Soot reduction is far less than linear with diesel displacement

Soot concentration measured with AVL

B Uiso Micro Soot Sensor (photoacoustic)
=§B°° Further investigation needed to
0004 understand underlying reasons
' - Richer local conditions for diesel
flame (increased HC emissions but
reduced CO for lean NH, dual-fuel)
» Possible role of ammonium nitrate?
B100 (FAME) and RD (paraffinic) lack
0.002 1 PAH found in ULSD
B100 also has 11% oxygen content
Cetane Density LHV
Fuel Number [g/cc] [MJ/kg]
0.000 NH, ~0 0.609 18.8
ULSD | B100 RD ULSD | B100 RD ULSD | B100 RD Diesel
A A1.4 A1.6 Baseline ULSD 40.8 0.856 42.2
B100 94.1 0.884 37.3
X QAK RIDCE | 1o - RD 849 | 0786 | 438
Y 1200 rpm, ~12.6 bar IMEP, > 90% NH, substitution, |-pilot
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Engine efficiency for NH; dual-fuel is equivalent to diesel for dual-fuel
NH; A sweep with late pilot injection timings

1200 rpm, ~12.6 bar IMEP

[ Other Losses
I Exhaust Enthalpy
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Fuel slip (chemical energy of unburned NH; & HC) is significant (10—
15% of fuel energy) for NH; dual-fuel operation

1200 rpm, ~12.6 bar IMEP
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For lean cases, ~ 15% of fuel remains unburned

For stoich case, 10% of fuel unburned, but
change not reflected in efficiency

Likely reforming some NH; to H,

« H, not currently measured, so shows up as
“Other”

« Quantity of H, needed to account for missing
NH; slip is equivalent to H, that would be
produced by cracking 4.9% of the NH, fuel

Implications for EGR operation



Other losses is the balance term and comprises heat transfer to
coolant/oil/room as well as other unaccounted-for losses

[ Other Losses
I Exhaust Enthalpy

I Fuel Slip

I Indicated Work

1200 rpm, ~12.6 bar IMEP

This is a full multi-cylinder engine converted to
run on one cylinder
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Convective heat transfer to the room, etc. is
thus for the full block (balances of coolant vs oil
HT, etc. may vary for full engine)
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Heat transfer is significantly reduced for NH; dual-fuel operation
relative to diesel

[ Other Losses
I Exhaust Enthalpy

I Fuel Slip

I Indicated Work
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Questions?

)

Dual-fuel approach
effective for high NH,
substitution

Combustion development
needed at low loads
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SCR shows potential for
NH; + NO, cleanup

N,O formation is a
concern

Thermal efficiency
equivalent to diesel

Reduced heat transfer
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