

R&D Experiences for NH₃ combustion in KIER

Fundamental staging-combustion behavior
Co-firing with pulverized coal particles

Hookyung LEE (Ph.D.)

Combustion Group in Energy Efficiency Research Division

КЛЕК 한국에니지기술연구원 КОПЕЛ INSTITUTE OF ENERGY RESEARCH

E-mail : hk.lee@kier.re.kr

Most Known Facts about NH₃ Combustion

> Difficult ignition and flame stability conditions due to very low burning rates

[SIP Energy Carriers PJT, Japan]

Key Policy for NH₃ Use in Co-generation in Korea

KIER Great 1st

> National Power Supply Plan : Advanced recognition of carbon emission reduction by using H_2 and NH_3

Demonstration Plants for Fuel Conversion to NH₃ (first-step with coal) 1st

10th National power supply plan

Current Status of NH₃ Combustion Research in Korea

National R&D is underway in the power generation sector, such as coal-fired boilers and gas turbines (marine engine), and in the steel sector, such as heating furnace burners

Korea Institute of Energy Research (KIER)

Combustion Group in KIER

- > A group of combustion experts (15) who have been conducting combustion research for over 40 years in a KIER lab.
 - Application to power generation, steel treatment and petrochemical processes

Ammonia Research Flows in KIER

> Full-cycle research is being conducted from NH₃ production, utilization (combustion, fuel cell) and post-treatment technology

NG-NH₃ Co-firing Facility at KIER

Pulverized Coal-NH₃ Co-firing Facility at KIER

^r Single coal particle combustion system _J

^r 30 kW PC & NH₃ Co-firing Flame-Emission Measurement _J

Pulverized Coal-NH₃ Co-firing Facility at KIER (cont'd)

^r 30 kW PC-NH₃ co-firing system (single BNR) _J

^r 1.0 MW PC & Gas fuel co-firing combustor (single BNR) _J

NH₃ Co-firing (coal/biomass/waste) Facility in CFB at KIER Great 1st Great 1st

Loop-seal

FD fan

1st cyclone

chambe

^r 100 kW NH₃ co-firing CFB system _J

^r 10 MW NH₃ co-firing CFB system with steam TBN (2 MWe) J

Fundamental Researches for 100% NH₃ Combustion

Study on stability and emission characteristics of ammonia-air flames in globally lean - locally lean two-stage combustion condition

- Tangential injection combustor
 - : Intense angular momentum
 - : Remarkable mixing performance

Fig. 1. (a) Schematic of a fuel-staged, tangential injection combustor with an emission measurement system, (b) Cross-sectional view of a primary combustion zone.

Measurement techniques

- Flame stability limit
- Recorded flame detachment/blowoff conditions
- Emission measurement
- FTIR (Fourier Transform Infra-Red) system
- NO (corrected) and N₂O concentration in ppmvd
- NO was adjusted by the theoretical O_2 concentration
- Secondary ammonia injection
- To reduce massive fuel NOx emissions by using SNCR reaction (Thermal DeNOx process)

KIER Great 1st

- Ammonia feeding lines were distributed into primary and secondary injection ports

Test conditions

- $U_{inlet} = 10 \sim 200 \text{ cm/s}$
- $\phi_{\text{global}} = 0.60 \sim 1.3$
- $\phi^*_{\text{primary}} = 0.75 \sim 0.95 \ (Q^*_{\text{secondary}} = 0.1 \sim 0.4 \text{ SLPM})$

Apparent Flame Structures

Effects of equivalence ratio (Φ) and inlet velocity (U_{bulk}) on flame structures

KIER Great 1st

^r Equivalence ratio effect _J

 \succ

Flame Stability Characteristics

\succ Stability map of the premixed NH₃ flame and varying flame structures with respect to the global equivalence ratio

- Premixed ammonia flames in the high-swirl combustor are stabilized even in the vicinity of lean flammable limit and at low velocity condition of 10 cm/s, and have a relatively wide range of operation window.
- Lean and rich blow-off processes are markedly different, especially for the initial point of flame extinction.

Emission Characteristics

> Exceptional NO emission trend under lean conditions, the abrupt decrease in [NO] in the rich-burn regime is similar to that reported

KIER Great 1st

- Salient feature of low [NO] is observed but it is associated with heat loss through the wall and ambient inlet mixture temperature
- Increasing U_{bulk} give rise to a gradual increase in the NO mole fraction due to the elevated $T_{\text{primary}} \rightarrow$ Improved combustion efficiency

T. Lee et al, Combust Flame 248 (2023) 112593

Emission Characteristics with Fuel Staging

> To maximize the NO reduction rate, delicate control of the temperature distribution by the U_{bulk} and Φ is pivotal in this strategy

$$\eta_{\rm NO}(\%) = \left\{ 1 - \frac{[\rm NO]_{staging} \Big|_{\phi^*_{\rm primary}}}{[\rm NO]_{baseline} \Big|_{\phi_{\rm global}} = \phi^*_{\rm primary}} \right\} \times 100$$

NO reduction rate dramatically increased with increasing bulk velocity as a result of the elevated temperature

KIER Great 1st

- $\underline{U}_{\underline{bulk}} = 40 \text{ cm/s}$
- NO emissions decreased by up to 25% when Q*secondary is 0.3 LPM ($\phi^*_{\text{primary}} = 0.77$)
- $\underline{U}_{bulk} = 120 \text{ cm/s}$

- $T_{primary} = 680$ °C promotes a substantial NO reduction of up to 77% despite the small addition of the bypassed NH₃, which corresponds to 8% of the total fuel flow rate

- Nevertheless, it could not reduce the [NO] below 160 ppmv
- <u>Over $U_{\text{bulk}} = 120 \text{ cm/s}$ </u>
- Elongated flame structure went beyond the primary region
- Then, NH₃ is directly burned ammonia instead of facilitating the SNCR process.

Phenomenological Characteristics of PC Combustion

For approach to detailed observation : $d_p \sim 100 \mu m$ moving at $\sim 3 m/s$, Time resolution(Δt) $\sim 100 \mu s$, Size resolution (pixel) $\sim 10 \mu m$

KIER Great 1st

> Extremely heterogeneous behavior : Unable to expect uniform data when using gaseous fuel

Apparent Flame Behavior in PC-NH₃ Co-firing Conditions

 \succ Flame shape according to ammonia co-firing rate, when ammonia is injected into PA flow (30 kW_{th})

Relation between Fuel-staging and Flame Stability

> If the swirl intensity of the outermost flow is strong, it adversely affects the flame stability

PC-NH₃ Co-firing Flame Radiant Intensity

KIER Great 1st

One of the soot particles

RBED ORGANIC CARCINOGENS

- > Most radiative heat transfer is caused by the radiation of soot particles in a coal flame
- > Lower coal flow (Higher NH_3 co-firing ratio) \rightarrow Lower radiant intensity

North Carolina Health News

KIER Great 1st

Proper NH₃ staging induces the SNCR (selective non-catalytic reduction) effect

- Excessive staging causes NH₃ slip
- > A small amount (~10 ppm) of N_2O is also generated from pulverized coal co-firing conditions

PC- 20% NH₃ co-firing can be overcome with well-controlled combustion techniques

High co-firing rate or NH₃ combustion requires new nozzle design

 \succ Will it create a stable flame? Would you be satisfied with adding NH₃?

NH₃-ready burner design is required considering NH₃ supply (commercial)

Global R&D trends indicate that no facilities can use only one fuel

Please e-mail any questions to :

Dr. Hookyung Lee (hk.lee@kier.re.kr)

Korea Institute of Energy Research (KIER)

152 Gajeong-ro, Yuseong-gu, Daejeon (34129) TEL : +82-42-860-3307

Copyright © 2024 KOREA INSTITUTE OF ENERGY RESEARCH. All Right Reserved.