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Most Known Facts about NH; Combustion

> Difficult ignition and flame stability conditions due to very low burning rates
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Key Policy for NH; Use in Co-generation in Korea —_—

» National Power Supply Plan : Advanced recognition of carbon emission reduction by using H, and NH,
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Demonstration Plants for Fuel Conversion to NH; (first-step with.coal) 5
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Current Status of NH; Combustion Research in Korea o =

» National R&D is underway in the power generation sector, such as coal-fired boilers and gas turbines (marine engine),
and in the steel sector, such as heating furnace burners
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Korea Institute of Energy Research (KIER) —_—

> One of the National Research Institute Funded by Korean Government
- Representative R&D Institute in the Combustion & Energy Field

Personnel : 550 (full-time) / Ph.D. 350 Expanding Technology
H/Q Location : Daejeon Budget : $ 160 M/yr (USD)
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Combustion Group in KIER

KIER Great "

» A group of combustion experts (15) who have been conducting combustion research for over 40 years in a KIER lab.

- Application to power generation, steel treatment and petrochemical processes

1990s 2000s 2010s 2020s
Body Rolling heating furnace design Roller kiln Shuttle kiln Oxy-fuel heating furnace Smart furnace design platform
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Metal fiber BNR : RT heat storage BNR ' Semi-conductor process BNR
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Ammonia Research Flows in KIER —

» Full-cycle research is being conducted from NH; production, utilization (combustion, fuel cell) and post-treatment technology

» NH; synthesis in low T and low P » NH; -only combustion » N-complex species
- NO, NO,, N, 0, (slipped) NH,

- Simultaneous reduction
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NG-NH, Co-firing Facility at KIER
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Pulverized Coal-NH, Co-firing Facility at KIER
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I Single coal particle combustion system | I 30 KW PC & NH, Co-firing Flame-Emission Measurement |
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Pulverized Coal-NH; Co-firing Facility at KIER (cont’d)

KIER Great "

I 30 KW PC-NH, co-firing system (single BNR) ; F'1.0 MW PC & Gas fuel co-firing combustor (single BNR) ,
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NH; Co-firing (coal/biomass/waste) Facility in CKFB at KIER & ==

I 100 kW NH; co-firing CFB system | ' 10 MW NH; co-firing CFB system with steam TBN (2 MWe) ,
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Fundamental Researches for 100% NH,; Combustion
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» Study on stability and emission characteristics of ammonia-air flames in globally lean - locally lean two-stage combustion condition

- Tangential injection combustor Measurement techniques
: Intense angular momentum

: Remarkable mixing performance *  Flame stability limit

D - Recorded flame detachment/blowoff conditions
(a) fubs (b)

* ~ Cross-sectional view —,

® — Sampling probe i : *  Emission measurement

- (primary region)

By - FTIR (Fourier Transform Infra-Red) system
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Fig. 1. (a) Schematic of a fuel-staged, tangential injection combustor with an emission measurement system. {b) Cross-sectional wiew of a primary combustion zone.

T. Lee et al, Combust Flame 248 (2023) 112593



Apparent Flame Structures

> Effects of equivalence ratio (@) and inlet velocity (U, ;) on flame structures

I Equivalence ratio effect ;
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Flame Stability Characteristics KIER Great ]

» Stability map of the premixed NH, flame and varying flame structures with respect to the global equivalence ratio

* Premixed ammonia flames in the high-swirl combustor are stabilized even in the vicinity of lean flammable limit and at low velocity
condition of 10 cm/s, and have a relatively wide range of operation window.

* Lean and rich blow-off processes are markedly different, especially for the initial point of flame extinction.
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Emission Characteristics

st

KIeR Great |

» Exceptional NO emission trend under lean conditions, the abrupt decrease in [NO] in the rich-burn regime is similar to that reported

« Salient feature of low [NO] is observed but it is associated with heat loss through the wall and ambient inlet mixture temperature

* Increasing Uy, give rise to a gradual increase in the NO mole fraction due to the elevated T,;,,y — Improved combustion efficiency
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T. Lee et al, Combust Flame 248 (2023) 112593 I



Emission Characteristics with Fuel Staging —_—

> To maximize the NO reduction rate, delicate control of the temperature distribution by the U, , and @ is pivotal in this strategy

[NO]stagmg b
Bl Uy =40 cm/s Mo (%) =41 - primary % 100

] [NO]baselmeL;bglobal o*
Ubuie = 80 cm/s

Ubu]];; -_— 120 le‘lls
100 NO reduction rate dramatically increased with increasing bulk velocity as a

primary

result of the elevated temperature
Upu =40 cmy/s
- NO emissions decreased by up to 25% when Q*secondary is 0.3 LPM (¢*primary =0.77)

Uy =120 cm/s

= Tprimary = 680 °C promotes a substantial NO reduction of up to 77% despite the small

addition of the bypassed NH;, which corresponds to 8% of the total fuel flow rate
- Nevertheless, it could not reduce the [NO] below 160 ppmv

*  Over U, =120 cm/s

0.10 015 020 025 030
(LPM)

- Elongated flame structure went beyond the primary region

Qsemndary - Then, NH; is directly burned ammonia instead of facilitating the SNCR process.

T. Lee et al, Combust Flame 248 (2023) 112593 I



Phenomenological Characteristics of PC Combustion —_—

» For approach to detailed observation : d, ~100 pm moving at ~3 m/s, Time resolution(At) ~100 ps, Size resolution (pixel) ~10 pm
> Extremely heterogeneous behavior : Unable to expect uniform data when using gaseous fuel
High speed imaging High temp environment "'1,000 °C

- 4,200 fps (At= 238 psec)
- Exposure time 10 ps/frame

< Burner tip

N Char oxidation Combustion
Fly or bottom ash <+— Fragmentation «— " - .- .
~150 pm @ ~2 m/sec = Optical magnification: 14.3 pm per pixel or gasification of volatile matter
& Soot formation

H. Lee, S. Choi, Combust Flame, 2015




Apparent Flame Behavior in PC-NH; Co-firing Conditio

» Flame shape according to ammonia co-firing rate, when ammonia is injected into PA flow (30 kW) NI 100%
3 0

Coal 100% NH, 20% NH, 40% NH, 60% NH, 80%
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Relation between Fuel-staging and Flame Stability —_—

> If the swirl intensity of the outermost flow is strong, it adversely affects the flame stability

One of the stable forms of such a flame configuration is the stabilization of the front in the vortex
zone behind the stabilizer and in the vortex zone at the thin edge of the nozzle.
That stable flame is called M-shaped one.
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PC-NH,; Co-firing Flame Radiant Intensity

> Most radiative heat transfer is caused by the radiation of soot particles in a coal flame

> Lower coal flow (Higher NH, co-firing ratio) — Lower radiant intensity

Radiant intensity

One of the sooft particles

7 ADSORBED ORGANIC CARCINOGENS
‘/-' (e.g. benzo(a) pyrene)

<— ADSORBED TOXIC METALS
/  (Be,Cd, Cr,Mn,Ni, V)

Different temperature
from the particle

NH; co-firing ratio

Y.A. Levendis (2013)

s
Mag VacMode WD
250x High vacuum 12.6 mm 25.0 kV|SSD river ash

North Carolina Health News




Concluding Remarks

Proper NH; staging induces the SNCR (selective non-catalytic reduction) effect

> Excessive staging causes NH; slip
» A small amount (~ 10 ppm) of N, O is also generated from pulverized coal co-firing conditions

PC- 20% NH; co-firing can be overcome with well-controlled combustion techniques

High co-firing rate or NH; combustion requires new nozzle design |

> Willit create a stable flame? Would you be satisfied with adding NH;?

NH;-ready burner design is required considering NH, supply (commercial)

» Global R&D trends indicate that no facilities can use only one fuel
EOD |



Questions?
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Please e-mail any questions to :

Dr. Hookyung Lee (hk.lee@kier.re.Kkr)

Korea Institute of Energy Research (KIER)
152 Gajeong-ro, Yuseong-gu, Daejeon (34129) TEL : +82-42-860-3307
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