

U.S. DEPARTMENT OF
ENERGY

Fossil Energy and Carbon Management

Hydrogen with Carbon Management Ammonia Combustion Activities

May 2, 2023

A Vision for Carbon Management

A carbon management framework that will guide FECM's engagement with offices across the Department, Federal agencies, tribal and international governments, industry, non-governmental organizations, and communities

Advancing Justice, Labor, and Engagement

Priorities: Justice, labor, and international and domestic partnerships

Advancing Carbon Management Approaches Toward Deep Decarbonization

Priorities: Point-source carbon capture (PSC), carbon dioxide conversion, carbon dioxide removal (CDR), and reliable carbon transport and storage

Advancing Technologies that Lead to Sustainable Energy Resource Utilization

Priorities: Hydrogen with carbon management, domestic critical minerals (CM) production, and methane mitigation

Advanced Turbines Program

National Goals

- Carbon-free electricity by 2035
- Net-zero emissions by 2050
- Create new clean energy jobs
- Revitalize communities
- Advance environmental justice

FECM Advanced Turbine Goals

- Use H₂ based fuels while maintaining low NOx and high performance
- Optimization for Carbon Capture and Storage
- Support advanced efficiency
 - Near term 67% (combined cycle) and 50% (simple cycle)
 - Future 70% efficient cycle
 - Pressure gain combustion
- Improve flexible operations
- Additive manufacturing & artificial intelligence

FY21-22 FOAs in Hydrogen R&D

- UTSR FOA FY 21
 - \$6.2 M DOE with 20 % cost share
 - Eight university projects awarded
 - **Focus on hydrogen and ammonia combustion R&D**
- FOA 2400—Clean Hydrogen Production, Storage, Transport, and Utilization to Enable a Net-Zero Carbon Economy
 - **H₂ Combustion Systems** for Gas Turbines – applied engineering-scale prototype testing
 - **NH₃ Combustion Systems** – bench-scale
 - Demonstration of a **Rotating Detonation Engine (RDE)**

LES Simulation of flashback with increasing H₂ content in a NG fuel

FY21 UTSR Advanced Turbine Awards

- Hydrogen /NH₃ Combustion Fundamentals for Gas Turbines
 - Georgia Tech Research Corporation [Project page](#)
 - University of Central Florida [Project page](#)
 - San Diego State University [Project page](#)
- Hydrogen Combustion Applications for Gas Turbines
 - Purdue University
 - The Ohio State University
 - University of California, Irvine
- Hydrogen-Air RDE
 - The University of Alabama
 - Purdue University

Work being done:

- Explore **chemical kinetics** for H₂/NH₃ fuels
- Investigate **NOx** & flame strain rate
- Investigate **ignition delay** times
- Measure **flame speed**
- Evaluate existing fuel injectors
- **Flame structure and combustion dynamics** for H₂ & NH₃ fuels
- Assess RDE combustion modes
- Develop design rules for micromixer injectors
- Develop CFD design tools

Recent Industry Advanced Turbine Awards

- Develop combustion modules for F-class, aeroderivative and industrial scale turbines
- Develop retrofit technologies
- Apply to 100% hydrogen & natural gas / hydrogen blends
- **Assess ammonia fuels**
- Advance application of rotating detonation combustion systems for power generation
- Advance hydrogen combustor technology to next stage of testing & demonstration

Performer	Title	Total Funding (\$M)
Solar Turbines	Development of a Retrofittable Dry Low Emissions Industrial Gas Turbine Combustion System for 100% Hydrogen and Natural Gas Blends	5.6
GTI	Investigation of Ammonia Combustion for Turbines (IACT) Project page	4.1
General Electric Company	Advanced Mixed Mode Combustors for Hydrogen F-Class Retrofit	15.0
GE Research	Demonstration of a Gas Turbine-Scale RDC Integrated with Compressor and Turbine Components at 7FA Cycle Conditions	8.7
Raytheon Technologies	Development of Hydrogen Burner for FT4000 Aeroderivative Engine	6.0
Raytheon Technologies	Low-NOx, Operable Ammonia Combustor Development for Zero-Carbon Power (LOAD-Z) Project page	4.2

U.S. DEPARTMENT OF
ENERGY

Fossil Energy and
Carbon Management

Questions?

Bob Schrecengost
Robert.Schrecengost@hq.doe.gov

Director, Hydrogen with Carbon Management

