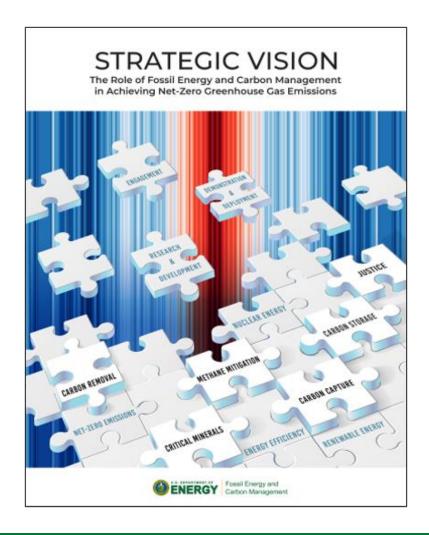


Hydrogen with Carbon Management Ammonia Combustion Activities

May 2, 2023



A Vision for Carbon Management

A carbon management framework that will guide FECM's engagement with offices across the Department, Federal agencies, tribal and international governments, industry, non-governmental organizations, and communities

Advancing Justice, Labor, and Engagement

Priorities: Justice, labor, and international and domestic partnerships

Advancing Carbon Management Approaches Toward Deep Decarbonization

Priorities: Point-source carbon capture (PSC), carbon dioxide conversion, carbon dioxide removal (CDR), and reliable carbon transport and storage

Advancing Technologies that Lead to Sustainable Energy Resource Utilization

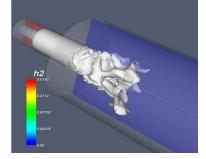
Priorities: Hydrogen with carbon management, domestic critical minerals (CM) production, and methane mitigation

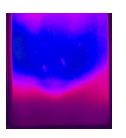
Advanced Turbines Program

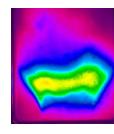
National Goals

- Carbon-free electricity by 2035
- Net-zero emissions by 2050
- Create new clean energy jobs
- Revitalize communities
- Advance environmental justice

FECM Advanced Turbine Goals


- Use H₂ based fuels while maintaining low NOx and high performance
- Optimization for Carbon Capture and Storage
- Support advanced efficiency
 - Near term 67% (combined cycle) and 50% (simple cycle)
 - Future 70% efficient cycle
 - Pressure gain combustion
- Improve flexible operations
- Additive manufacturing & artificial intelligence

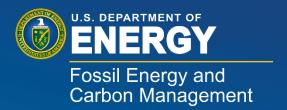

FY21-22 FOAs in Hydrogen R&D


- UTSR FOA FY 21
 - \$6.2 M DOE with 20 % cost share
 - Eight university projects awarded
 - Focus on hydrogen and ammonia combustion R&D
- FOA 2400—Clean Hydrogen Production, Storage, Transport, and Utilization to Enable a Net-Zero Carbon Economy
 - H₂ Combustion Systems for Gas Turbines applied engineering-scale prototype testing
 - NH₃ Combustion Systems bench-scale
 - Demonstration of a Rotating Detonation Engine (RDE)

LES Simulation of flashback with increasing H₂ content in a NG fuel

FY21 UTSR Advanced Turbine Awards

- Hydrogen /NH₃ Combustion Fundamentals for Gas Turbines
 - Georgia Tech Research Corporation <u>Project page</u>
 - University of Central Florida <u>Project page</u>
 - San Diego State University <u>Project page</u>
- Hydrogen Combustion Applications for Gas Turbines
 - Purdue University
 - The Ohio State University
 - University of California, Irvine
- Hydrogen-Air RDE
 - The University of Alabama
 - Purdue University

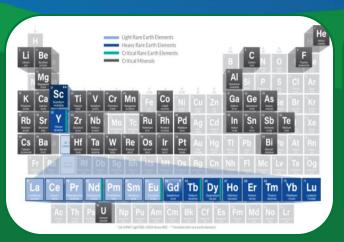

Work being done:

- Explore chemical kinetics for H₂/NH₃ fuels
- Investigate NOx & flame strain rate
- Investigate ignition delay times
- Measure flame speed
- Evaluate existing fuel injectors
- Flame structure and combustion dynamics for H₂ & NH₃ fuels
- Assess RDE combustion modes
- Develop design rules for micromixer injectors
- Develop CFD design tools

Recent Industry Advanced Turbine Awards

- Develop combustion modules for F-class, aeroderivative and industrial scale turbines
- Developretrofit technologies
- Apply to 100% hydrogen & natural gas / hydrogen blends
- Assess ammonia fuels
- Advance application of rotating detonation combustion systems for power generation
- Advance hydrogen combustor technology to next stage of testing & demonstration


Performer	Title	Total Funding (\$M)
Solar Turbines	Development of a Retrofittable Dry Low Emissions Industrial Gas Turbine Combustion System for 100% Hydrogen and Natural Gas Blends	
GTI	Investigation of Ammonia Combustion for Turbines (IACT) <u>Project page</u>	4.1
General Electric Company	Advanced Mixed Mode Combustors for Hydrogen F-Class Retrofit	15.0
GE Research	Demonstration of a Gas Turbine-Scale RDC Integrated with Compressor and Turbine Components at 7FA Cycle Conditions	8.7
Raytheon Technologies	Development of Hydrogen Burner for FT4000 Aeroderivative Enaine	6.0
Raytheon Technologies	Low-NOx, Operable Ammonia Combustor Development for Zero-Carbon Power (LOAD-Z) Project page	4.2


Questions?

Bob Schrecengost Robert.Schrecengost@hq.doe.gov

Director, Hydrogen with Carbon Management

