

THEORY INFORMED KINETICS FOR NH₃ OXIDATION AND PYROLYSIS

Stephen J. Klippenstein, Clayton MulvihillJanuary 14, 2025Jim Miller, Peter Glarborg, Raghu Sivaramakrishnan

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Theory Informed Kinetics (ThInK)

Spectacular Progress in First Principles Theor. Kin. Accuracy Rivals or Exceeds Many Experiments Generally can predict to better than factor of two Often 20 % uncertainties

High Level Composite Ab Initio Methods

- CCSD(T), CCSDT(Q), Anharmonicities,
- Core-Valence, Relativistic, DBOC
- Multi Reference Methods
 Sophisticated Variational Methods VRC-TST
 Multiple-Well Multiple-Channel Master Equation
 First Principles Energy Transfer
 Non-thermal Effects
 Roaming Channels

Theory Informed Kinetics (ThInK)

2. NH₃ Oxidation
Peter Glarborg, Jim Miller, SJK
Fails miserably for NH₃ Flame Speeds
NH₂ + HO₂, NH₂ + O, HNO + NH₂, H + HNNO
HNO + M, NH₂ + H + M, NH₂ + NH₂ + M (Jasper)
Resolution – Raghu Sivaramakrishnan
Mike Burke – importance of NH₃ and H₂O as colliders and Mixture Effects

3. NH₃ Pyrolysis

Synthesis by Pulsed Heating and Quenching Liangbing Hu and Dongxing Liu (Maryland), Emily Carter and Yiguang Ju (Princeton), Ahren Jasper and SJK (Argonne) Preparing Fully Theoretical Model for NH₃ Pyrolysis; N_xH_y With Clayton Mulvihill (Baylor)

Theory Informed Kinetics (ThInK)

- 4. NH_3 + CoFuel Oxidation Yiguang Ju: NH_3 + CH_3OH
- $NH_2 + CH_3OH$; $NH_2 + CH_2O$ Henry Curran: $NH_3 + CH_4$
- Proc. Combust. Inst. 40, 105489 (2024).

- $NH_2 + H_2NO$
- CH₃ + H₂NO
- R + H₂NO
- CH₃ + NH₂ Zhu, SJK, Curran, Zhou, Combust. Flame, submitted (2024).

5. N₂O Chemistry

- N₂O Dissociation Mulvihill
- $N_2O + O = NO + NO$
- $N_2O + O = N_2 + O_2$
- HNNO + H = ... Glarborg

NH₃ FLAME SPEEDS

NH₃ Flame Speeds

NH₃-air flames 298 K, 1.0 atm

Φ

Glarborg, Miller, Ruscic, Klippenstein Modeling Nitrogen Chemistry in Combustion Prog. Ener. Combust. Sci. 67 (2018) 31-68

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory anaged by Uchicago Argonne. LLC

Raghu Sivaramakrishnan - 2023

NH₃-air Flame, $\Phi = 1.1$

Glarborg

The $NH_3/NO_2/O_2$ System: Constraining Key Steps in Ammonia Ignition and N_2O Formation Combust. Flame 257 (2023), 112311.

$NH_2 + O$

$\begin{array}{l} \mathsf{CCSD}(\mathsf{T})\mathsf{-F12}/\mathsf{CBS}(\mathsf{TZ}\mathsf{-F12},\mathsf{QZ}\mathsf{-F12}) \text{ freqs.} \\ \mathsf{ANL1}' \text{ energies } \mathsf{\sim}\mathsf{CCSDTQ}(\mathsf{P})/\mathsf{CBS} + \mathsf{rel.} + \mathsf{DBOC} + \mathsf{anh.} \\ \mathsf{VRC}\mathsf{-TST} \text{ for } \mathsf{NH_2}\mathsf{+}\mathsf{O}; \, \mathsf{NH} + \mathsf{OH}; \ \mathsf{VTST} \text{ for } \mathsf{NH_2}\mathsf{O} = \mathsf{H}\mathsf{+}\mathsf{HNO}; \, \mathsf{etc} \end{array}$

SJK, Mulvihill, Glarborg Theoretical Kinetics Predictions for Reactions on the NH₂O Potential Energy Surface, J. Phys. Chem. A 127 (2023) 8650-8662.

$NH_2 + H (+ M) NH_2 + NH_2 (+M)$

Jasper Trajectory Simulations MP2/CBS

Table 1. Calculated Third-Body Efficiencies Relative to $M = N_2^{a}$

system	T (K)	$M = N_2$	Ar	O ₂	NH ₃	CH_4	CO ₂
$NH_3(+M)$	300	1.00	0.32	0.50	4.39	3.15 (2.60 ^a)	3.54 (2.83 ^a)
	1000	1.00	0.41	0.59	8.11	5.38	5.44
	2000	1.00	0.45	0.70	9.90	6.36	5.76
$N_2H_4(+M)$	300	1.00	$0.50 (0.77^{a}, 0.4^{b})$	0.61	2.93 (4.0 ^b)		
	1000	1.00	0.59	0.69	4.87		
	2000	1.00	0.70	0.80	6.02		
^a These are comp	ared with availa	able experimenta	al results given in parent	theses taken fi	rom ^a Altinay and M	MacDonald ^{37–39} or ^b	Van Khe et al. ⁴⁵

Additional Estimates of Third Body Collider Efficiencies for H_2O On the Rate Constant for $NH_2 + HO_2$ and Third-Body Collision Efficiencies for $NH_2 + H$ (+M) and $NH_2 + NH_2$ (+M) J. Phys. Chem. A, 125, 1505 (2021) Glarborg, Hashemi, Cheskis, Jasper

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Calculated third body efficiencies for $HNO(+M)$ relative to $M = Ar$.						
NH_3						
5.35						
5.82						
6.18						
5.87						
5.73						
5.90						
-						

H + NO(+M) = HNO(+M)

Jasper Trajectory Simulations MP2/CBS

An experimental, theoretical, and kinetic modeling study of postflame oxidation of ammonia Jian, Hashemi, Wu, Glarborg, Jasper, SJK CNF, 261, 113325 (2024).

FLAME SPEEDS WITH DIFFERENT DILUENTS

Data is from Figures 2a and 4b Figueroa-Labastida et al. CNF 260 (2024) 113256

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory unanaged by UChicago Argonne, LLC.

Argonne 🛆

1.00

TEMPERATURE DEPENDENT FLAME SPEEDS

PRESSURE DEPENDENT FLAME SPEEDS

 NH_3 -air counterflow, T = 300 K, ϕ = 1

DILUTION DEPENDENT FLAME SPEEDS

Data taken from Figure 7 Li et al. Int. J. Hydrogen Ener. 46 (2021) 21249.

Data taken from Figures 3a-b Chen et al. CNF 255 (2023) 112930.

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC Argonne

NH₃ PYROLYSIS

NH₂ KINETICS

Frequencies

CCSD(T)-F12/ccpVQZ-F12

- Core-Valence; CCSD(T)/CBS(TZ,QZ)
- Relativistic; CCSD(T)/atz
- **Diagonal Born-Oppenheimer** •
- Anharmonic; CCSD(T)/TZ

Rates

- VTST
- Anharmonic State Counts
- 1 Dimensional ME •

Deppe

0.4

0.45

0.5

··· k0(P=1)

U.S. DEPARTMENT OF U.S. Department of Energy laboratory U.S. Department of Energy laboratory unanged by UChicago Argonne. IIC

NH₄ KINETICS

N₂H_X POTENTIAL ENERGY SURFACES

N₂H_X POTENTIAL ENERGY SURFACES

Table 1: Basis Set Convergence (kcal/mol)

Table 2: Corrections

Species	A5Z	A6Z	CBS	CBSF12	Delta CBS
N ₂ H ₂ ;t + H	0	0	0	0	0
$N_2H_2;t + H =$	2.01	1.96	1.91	1.90	-0.01
N_2H_3					
N_2H_3	-51.94	-52.00	-52.08	-52.12	-0.04
$N_2H_2;t + H =$	3.01	2.99	2.97	2.97	0.00
$NNH + H_2$					
$NNH + H_2$	-37.59	-37.60	-37.62	-37.61	0.00
$N_2H_2;c+H$	5.42	5.40	5.38	5.40	0.02
$N_2H_2;c + H =$	7.64	7.58	7.50	7.51	0.01
N_2H_3					
$N_2H_2;c + H =$	5.85	5.81	5.75	5.78	0.03
$NNH + H_2$					
$H_2NN + H$	24.95	24.90	24.84	24.81	-0.03
$H_2NN + H =$	No S.P.				
N_2H_3					
$H_2NN + H =$	24.68	24.62	24.54	24.52	-0.02
$NNH + H_2$					
$NH_2 + {}^3NH$	29.76	30.08	30.46	30.45	-0.01
$NH_2 + {}^3NH =$	31.34	31.65	32.02	32.01	-0.01
$NH_3 + {}^4N$					
$NH_3 + {}^4N$	-2.84	-2.42	-1.91	-1.95	-0.04

Species	T(Q)	T(Q)	Q(P)	Core-	Rel.	DBOC	Har.
-	DZ	ΤZ	DZ	Val.			ZPE
$N_2H_2;t + H$	0	0	0	0	0	0	0
$N_2H_2;t + H =$	-0.36	-0.43	0.00	0.01	0.00	0.02	0.88
N ₂ H ₃							
N_2H_3	0.16	0.12	0.00	-0.27	0.13	-0.07	7.17
$N_2H_2;t + H =$	-0.26	-0.26	0.01	0.04	-0.03	0.17	-1.54
$NNH + H_2$							
$NNH + H_2$	<mark>-0.35</mark>	<mark>-0.17</mark>	0.01	-0.04	-0.07	0.09	-3.17
$N_2H_2;c+H$	-0.03	-0.01	0.00	0.05	-0.01	0.01	-0.38
$N_2H_2;c + H =$	-0.29	-0.35	0.00	0.05	0.00	0.03	0.57
N_2H_3							
$N_2H_2;c + H =$	-0.22	-0.23	0.02	0.06	-0.03	0.10	-0.81
$NNH + H_2$							
$H_2NN + H$	0.04	-0.01	0.01	-0.12	0.05	0.03	-0.78
$H_2NN + H =$	No						
N_2H_3	S.P.						
$H_2NN + H =$	-0.15	-0.21	0.02	-0.11	0.05	0.12	-0.82
$NNH + H_2$							
$NH_2 + {}^3NH$	0.39	0.05	-0.03	0.30	-0.10	0.09	-1.10
$NH_2 + {}^3NH =$	<mark>0.05</mark>	<mark>-0.26</mark>	-0.02	0.31	0.31	0.12	-0.25
$NH_3 + {}^4N$							
$NH_3 + {}^4N$	0.44	0.19	-0.01	0.09	-0.07	-0.10	3.80

NH₃ + CO-FUELS

NH₃/CH₃OH OXIDATION

Wang, Mei, Liu, Thawko, Mao, Zhao, Glarborg, SJK, Ju, Proc. Combust. Inst. 40,

CH₃ + NH₂ POTENTIAL ENERGY SURFACE

ANLOF CCSD(T)-F12/cc-pVTZ-F12 CCSDT(Q)/cc-pVDZ Core-Valence Rel. Anharm. MRCI tests VRC-TST

Yuxiang Zhu, SJK, Curran, Chong-Wen Zhou

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Yuxiang Zhu, SJK, Curran, Chong-Wen Zhou

NH₃/CH₄ IGNITION DELAY TIMES

Yuxiang Zhu, SJK, Curran, Chong-Wen Zhou

$NH_2 + H_2NO$

OPT/Freq/ZPE/Conformer: CCSD(T)-F12/cc-pVTZ-F12 **SPE:** CCSD(T)-F12/CBS-F12 + CCSDT(Q)/cc-pVDZ + Core-Valence/CBS(TZ,QZ) + Relativistic(ATZ) + Anharm(B2PLYPD3/TZ) + Born-Oppenheimer

Dominant Path:

 $NH_2 + H_2NO = NH_2NH_2O$ $NH_2NH_2O = NH_3 + HNO$ Effectively Just Abstraction

Other Paths:

< 2%

Abstraction Rate:

Preliminary Rate ~ 4-5 times less than from Stagni Significant Multireference Effects T(Q) Correction = -2.8 kcal/mol ANL0 Like Barrier at -5.6 kcal/mol Stagni CASPT2 Barrier at -8.7 kcal/mol Spin-Splitting corrected Barrier at -8.0 kcal/mol

Next Step

CI+QC Barrier with Spin Splitting

CH₃+H₂NO

OPT/Freq/ZPE/Conformer: CCSD(T)-F12/cc-pVTZ-F12 **SPE:** CCSD(T)-F12/CBS-F12 + CCSDT(Q)/cc-pVDZ + Core-Valence/CBS(TZ,QZ) + Relativistic(ATZ) + Anharm(B2PLYPD3/TZ) + Born-Oppenheimer Dominant Path: $CH_3 + H_2NO = CH_3NH_2O$

Secondary Paths: $CH_3 + H_2NO = CH_3ONH_2$ $CH_3NH_2O = CH_3NHOH$ $CH_3NHOH = CH_4 + HNO$ $CH_3NHOH = CH_3N + H_2O$ Other Paths:

What happens to

CH₃NHOH and

CH₃ONH₂?

< 1%

Addn to N preferred over O

Temperature (K)

N₂O CHEMISTRY

HNNO + H

Meng, Lei, Burke, On the Role of HNNO in NOx Formation, Proc. Combust. Inst. 39, 551-560 (2023).

Experimental and kinetic modeling study of the N_2O-H_2 system: Implications for $N_2O + H$ Glarborg, Fabricius-Bjerre, Joensen, Hashemi, SJK CNF, 271, 113810 (2024).

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

HNNO + H RATE CONSTANTS

HNNO chemistry

ACKNOWLEDGEMENTS

DOE-BES CSGB Gas Phase Chemical Physics (Wade Sisk)

- Core Program Chemical Dynamics in the Gas Phase
- Argonne-Sandia Consortium on Pressure Dependent Chemistry

DOE-BES CSGB Solar Photochemistry (Jennifer Roizen)

• A Programmable Non-Equilibrium Electrified Ammonia Synthesis for Efficient Hydrogen Storage

Collaborators

Jim Miller Peter Glarborg Raghu Sivaramakrishnan, Ahren Jasper Clayton Mulvihill Yiguang Ju Henry Curran/Chong-Wen Zhou

(DTU) (Argonne) (Baylor) (Princeton) (Galway)

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. Argonne