Toward Predictive Kinetics for Ammonia Combustion and Emissions

Michael P. Burke

Mechanical Engineering, Chemical Engineering, and Data Science Institute Columbia University

Rodger Cornell (PhD 2022 - ARL)

Carly LaGrotta (PhD 2023)

Joe Lee (PhD Candidate)

Lei Lei (PhD 2020)

Avery Rambur Ella Kane (MS Candidate) (PhD Candidate) (PhD Candidate)

Jon Pankauski

Patrick Singal (PhD Candidate)

Challenges in complex reactions worse for nitrogen

Key reactions have multiple wells/channels with complex *T/P/X* dependence

Challenges in complex reactions worse for nitrogen

- 1. Experimental data alone are often insufficient to confirm *both* chemistry/physics *and* relevant parameters
- 2. Experiments at typical conditions can fail to differentiate among multiple pathways and can have blind spots
- 3. Typical rate-parameter optimization can mask incomplete chemistry/physics and can't extrapolate

Challenges impede engineering design

"NO_x predictions using currently available combustion models are <u>too variable and uncertain</u> to be used as reliable gas-turbine engine design tools."

Challenges impede engineering design

Rich-Quench-Lean combustion of NH_3/CH_4 with 50% H_2O at 40 atm Raslan, Yang, Durocher, Guthe, Bergthorson *J Eng Gas Turb Power* (2024) Rich-Relaxation combustion of NH₃ for ϕ = 1.22 at 20 atm (similar to: Gubbi, Cole, Emersen, Noble, Steele, Sun, Lieuwen ACS Energy Lett (2023))

When models get it "right"...

ACS Energy Lett (2023)

When models get it "right"...often for wrong reasons

Gubbi, Cole, Emersen, Noble, Steele, Sun, Lieuwen ACS Energy Lett (2023)

None of the models shown account for very high NH_3 third body efficiency!

System	300 K	1000 K	2000 K		
HO_2 (+M)					
He:Ar	$0.90 (0.82)^a$	1.17	1.34		
N ₂ :Ar	1.71 (1.95) ^a	$1.58 (1.79)^{b}$	1.20 (1.38)		
H ₂ :Ar	$3.69(2.52)^a$	3.07	1.71		
CO ₂ :Ar	13.7	8.94 (4.29) ^b	$3.03(5.0)^{c}$		
NH ₃ :Ar	20.4	17.9	18.7		
H ₂ O:Ar	23.3 (22.7) ^a	$22.2 (18.9)^{b}$	21.3 (23.0)		
NH_3 (+M)					
N ₂ :Ar	3.15 ^f	2.47	2.25		
O ₂ :Ar	1.55	1.48	1.70		
CO ₂ :Ar	11.2^{f}	13.4	14.3		
NH ₃ :Ar	13.9	20.0	22.2		
CH ₄ :Ar	9.94 ^f	13.3	14.3		
H ₂ O:Ar	14.0	23.6	27.9		

Third-body efficiencies from *ab initio* trajectory calculations Jasper *Faraday Discuss* (2022)

When models get it "right"...

System	300 K	1000 K	2000 K
HO_2 (+M)			
He:Ar	$0.90 (0.82)^a$	1.17	1.34
N ₂ :Ar	$1.71 (1.95)^a$	$1.58 (1.79)^{b}$	$1.20(1.38)^{c}$
H ₂ :Ar	$3.69(2.52)^a$	3.07	1.71
CO ₂ :Ar	13.7	8.94 (4.29) ^b	$3.03(5.0)^{c}$
NH ₃ :Ar	20.4	17.9	18.7
H ₂ O:Ar	23.3 (22.7) ^a	$22.2 (18.9)^{b}$	21.3 (23.0) ^c
NH_3 (+M)			
N ₂ :Ar	3.15	2.47	2.25
O ₂ :Ar	1.55	1.48	1.70
CO ₂ :Ar	11.2^{f}	13.4	14.3
NH ₃ :Ar	13.9	20.0	22.2
CH ₄ :Ar	9.94 ^f	13.3	14.3
H ₂ O:Ar	14.0	23.6	27.9

Third-body efficiencies from *ab initio* trajectory calculations Jasper *Faraday Discuss* (2022)

Singal, Lee, Lei, Speth, Burke PCI (2024)

When models get it "right"...

ACS Energy Lett (2023)

	-				
System	300 K	1000 K	2000 K		
HO_2 (+M)					
He:Ar	$0.90 (0.82)^a$	1.17	1.34		
N ₂ :Ar	$1.71 (1.95)^a$	$1.58 (1.79)^{b}$	1.20 (1.38)		
H ₂ :Ar	$3.69(2.52)^a$	3.07	1.71		
CO ₂ :Ar	13.7	8.94 (4.29) ^b	$3.03(5.0)^{c}$		
NH ₃ :Ar	20.4	17.9	18.7		
H ₂ O:Ar	23.3 (22.7) ^a	22.2 (18.9) ^b	21.3 (23.0)		
$NH_3(+M)$					
N ₂ :Ar	3.15 ^f	2.47	2.25		
O ₂ :Ar	1.55	1.48	1.70		
CO ₂ :Ar	11.2^{f}	13.4	14.3		
NH ₃ :Ar	13.9	20.0	22.2		
CH ₄ :Ar	9.94 ^f	13.3	14.3		
H ₂ O:Ar	14.0	23.6	27.9		

Third-body efficiencies from *ab initio* trajectory calculations Jasper *Faraday Discuss* (2022)

Challenges in complex reactions worse for nitrogen

- 1. Experimental data alone are often insufficient to confirm *both* chemistry/physics *and* relevant parameters
- 2. Experiments at typical conditions can fail to differentiate among multiple pathways and can have blind spots
- 3. Typical rate-parameter optimization can mask incomplete chemistry/physics and can't extrapolate

Opportunities to address challenges

- 1. Experimental data alone are often insufficient to confirm *both* chemistry/physics *and* relevant parameters
- 2. Experiments at typical conditions can fail to differentiate among multiple pathways and can have blind spots
- 3. Typical rate-parameter optimization can mask incomplete chemistry/physics and can't extrapolate

- 1. Ab initio theory can characterize chemistry/physics, constrain parameters and experimental interpretations, and extrapolate
- 2. Bayesian design can pinpoint experiments to accentuate pathways, differentiate among mechanisms, and predict Quantities of Interest
- 3. Multiscale data-driven modeling using theoretical and experimental data can evaluate consistency and can extrapolate

A multiscale physics-based, data-driven approach

- 1. Experimental data alone are often insufficient to confirm *both* chemistry/physics *and* relevant parameters
- 2. Experiments at typical conditions can fail to differentiate among multiple pathways and can have blind spots
- 3. Typical rate-parameter optimization can mask incomplete chemistry/physics and can't extrapolate

- 1. Ab initio theory can characterize chemistry/physics, constrain parameters and experimental interpretations, and extrapolate
- 2. Bayesian design can pinpoint experiments to accentuate pathways, differentiate among mechanisms, and predict Quantities of Interest
- 3. Multiscale data-driven modeling using theoretical and experimental data can evaluate consistency and can extrapolate

1. Deep dives on reactions relevant to N_2O emissions from NH_3 combustion

2. Multi-scale data-driven models using theoretical and experimental data for NH₃ combustion

N₂O formation and consumption

N ₂ O production:	$NH + NO \longrightarrow N_2O + H (high-T)$ $NH_2 + NO_2 \longrightarrow N_2O + H_2O (vs. H_2NO + NO)$
N_2O consumption:	$N_2O \longrightarrow O + N_2$ (high-T)
	$N_2O + NH_2 \longrightarrow N_2H_2 + NO$ $N_2O + H \longrightarrow N_2 + OH$
	$N_2O + O \longrightarrow NO + NO$ $\longrightarrow N_2 + O_2$

$NH_2 + N_2O = N_2H_2 + NO$ is too fast is most models

Cornell, Barbet, Burke ENF (2021)

N₂O formation and consumption

N₂O production: $NH + NO \longrightarrow N_2O + H (high-T)$ $NH_2 + NO_2 \longrightarrow N_2O + H_2O (vs. H_2NO + NO)$ $N_2O \longrightarrow O + N_2$ (high-T) N₂O consumption: $-N_2O + NH_2 \longrightarrow N_2H_2 + NO$ $N_2O + H \longrightarrow N_2 + OH$ $N_2O + O \longrightarrow NO + NO$ $\rightarrow N_2 + O_2$

H + N₂O forms a lot of HNNO (missing from models)

HNNO pathways important to N₂O at high pressure

Glarborg, Fabricius-Bjerre, Joensen, Hashemi, Klippenstein CNF (2025)

N₂O formation and consumption

Disagreement about products (and rates) of $N_2O + O$

Disagreement about products (and rates) of $N_2O + O$

Disagreement about products (and rates) of $N_2O + O$

MultiScale Informatics (MSI) combines physics and data across multiple scales

Burke IJCK (2016)

Analysis considers uncertainties and theoretical/experimental data for *all* reactions

Lee, Barbet, LaGrotta, Meng, Lei, Haas, Burke CNF (2024)

MSI model broadly consistent with data

Lee, Barbet, LaGrotta, Meng, Lei, Haas, Burke CNF (2024)

MSI model shows lower $N_2O + O = N_2 + O_2$ rate

Lee, Barbet, LaGrotta, Meng, Lei, Haas, Burke CNF (2024)

Experiments fail to constrain $N_2O + O = N_2 + O_2$

Lee, Barbet, LaGrotta, Meng, Lei, Haas, Burke *CNF* (2024)

Optimal experiments in computer-controlled setup

Barbet, Lee, LaGrotta, Cornell, Burke CNF (2024)

Optimal design to reduce uncertainty in $k_{\rm N2O+O=N2+O2}$ considering actual experimental limitations and uniquely diverse chemical space

	5.85-20.0% N ₂ O (±2%)	Observable	N_2O^1	N_2^{1}	NO^1	NO^2	NO_2^2	O_2^1
Mixture composition	0.00-250 ppm NO (±2%) 0.00-422 ppm NO ₂ (±2%) balance He	Calibration	multi- point	multi- point	multi- point	1500 ppm ±2.3%	50.0 ppm ±6.4%	multi- point
		Drift	±2.5%	±3%	±1.5%	±1%	±1.5%	
Residence time	0.45s,1.0 s (±5%)	Linearity	±1%	±3%	±1%	±3%	±1%	_
Pressure	15.00 psi (±1%)	Noise (1σ)	$\pm 7^{a}/1^{b}\%$	±2%	$\pm 7^{a}/1^{b}\%$	±1%	±0.5%	±4%
Temperature	1050,1100 K (±1%)	Resolution	25 ppb	1 ppm	25 ppb	1 ppm	25 ppb	20 ppm

Barbet, Lee, LaGrotta, Cornell, Burke CNF (2024)

Optimal design identifies the value of NO₂ addition

10

À

10

_10

10

10 0

10

in

10

Barbet, Lee, LaGrotta, Cornell, Burke CNF (2024)

Measurements at these conditions definitively rule out higher rate constants for $N_2O + O = N_2 + O_2$

N₂O formation and consumption

Ongoing massive MSI analysis of theoretical and experimental data for nitrogen kinetics

- Expansive dataset:
 - Theoretical data for several 10s of reactions
 - Experimental data from 100s of experiments
- Primary focus thus far:
 - Subset of key reactions important to NH_3 oxidation by $NO/NO_2/N_2O$
 - NH₃ + H/O/OH/O₂, NH₂ + NO, NH₂ + NO₂, NH₂ + N₂O, H₂NO + OH/NO₂/O₂/HO₂, ...
 - (Strong but incomplete overlap with NO_x formation from H₂ and NH_3 oxidation by O₂)

MSI model gives alternative (self-consistent) explanations of data used to determine rate constants

Song, Golden, Hanson, Bowman IJCK (2001); PCI (2002); JPCA (2002); JPCA (2002)

Cornell, Lee, LaGrotta, Burke (in prep)

MSI model better reproduces training data

Fuel Comm (2022); CNF (2022); PCI (2023)

MSI model accurately predicts non-training data

Clees, Rault, Figueroa-Labastida, Barnes, Ferris, Hanson US Combust Meeting (2023); CNF (2024)

Conclusions

- N₂O consumption pathways are very different than previously thought
 - $N_2O + O = N_2 + O_2$ and $N_2O + NH_2 = N_2H_2 + NO$ are too slow to matter
 - $N_2O + H = HNNO$ (excluded from models) is a major pathway at high pressure
- Rate constants for key reactions in $\rm NH_3$ oxidation may be different than thought

• NH₂ + NO, NH₂ + NO₂, ...

- Multi-component pressure dependence important to full-strength mixtures
- Multiscale physics-based, data-driven approach useful for deriving new insights

Big open questions

- What other surprises are in store? what other reactions/species are missing?
- How do the kinetics change with pressure and *composition*?
- How much can we trust ammonia models right now?
- How do NH_3 and HCs interact? Synergistic/antagonistic? what new pathways emerge?

Avery Rambur Ella Kane Jon Pankauski Patrick Singal (MS Candidate) (PhD Candidate) (PhD Candidate) (PhD Candidate)

(PhD 2023)

Mark Barbet

Rodger Cornell Carly LaGrotta (PhD 2022 - ARL) (PhD 2023)

Joe Lee (PhD Candidate)

Lei Lei (PhD 2020)

Thank you!

Questions?

ACS PRF# 56409-DNI6

NSF CFS #1706252 NSF CDSE #1761491 NSF CAREER #1944004

DOE-BES DE-SC0019487

Picatinny Arsenal ILIR Army EQBR

