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Introduction
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Ammonia good candidate for carbon-free energy and energy storage

• But poor burning properties

• Probably have to be mixed with other fuels
• H2 good candidate (from NH3 cracking)

• Can be produced from renewable energy, air (N2), and H2O

• Easy to store and transport

• Industrial scale infrastructure already in place



Introduction
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Accurate kinetics model required to successfully implement NH3 as a fuel

• Turbines and ICEs need to be designed around the fuel they use

• Global kinetics data (Ignition delay time, laminar flame speed) relate to key 
combustion properties in real-world applications => useful to set the 
dimensions

• Detailed chemistry needed for pollutants (NO, NO2) and GHG (N2O) emissions

• Numerous NH3 models available in the literature

• Which ones are the best?
• How good are the models?

• Several model reviews recently published

• How to make better models?



Limitations of global kinetics data for model validation
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Global kinetics data relate to real properties in real-world applications but…

• Global kinetics data (IDT)

• Measurement based on physical parameter (P increase) 

• Qualitative measurement of chemical species (OH*, CH*…) 

=> Models w/ different reaction schemes can achieve the same (good) predictions

[1] O. Mathieu et al., Combust. Flame 162 (2015) 554-570. [2] J. Otomo et al., Int. J. Hydrogen Energy, 43 (2018) 3004–3014.

[3] X. Zhang et al., Combust. Flame, 234 (2021) 111653.   [4] A. Stagni et al., React. Chem. Eng., 5 (2020) 696–711. 
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Speciation studies provide more constrain but…

• Speciation studies

• Several species => higher level of constrain

• 1 species = 1 data/condition

[1] P. Glarborg, J. A. Miller et al., Prog. Energy Combust. Sci., 67 (2018) 31–68.    [2] J. Otomo et al., Int. J. Hydrogen Energy, 43 (2018) 3004–3014.

[3] X. Zhang et al., Combust. Flame, 234 (2021) 111653.   [4] A. Stagni et al., React. Chem. Eng., 5 (2020) 696–711.

Limitations of global kinetics data for model validation
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Laser diagnostics => great tool for model validation

• Concentration time history: 1 species = 
multiple targets per condition

• Induction delay time

• Rate of formation/consumption

• Final concentration level

• Specific features

• Max concentration
• …

• Limitations:

• Experimental conditions (pressure)

• Cost/complexity

Importance of time-history profiles
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Experimental Method: Species Measurement in a ST

• Quantum Cascade Lasers for:

– NH3 (957.839 cm-1)

– N2O (2192.474 cm−1) 

– H2O (1348.186 cm−1)

Absorption Laser Diagnostic 
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Beer-Lambert relation

𝐼𝑡

𝐼0
= 𝑒𝑥𝑝 −𝑘𝑣𝑃𝐿𝑋𝐶𝑂
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Simultaneous species
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Experimental Method: Species Measurement in a ST

– NH3 (957.839 cm-1)

– N2O (2192.474 cm−1)

Necessitate double pass 
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Experimental Method: Mixture preparation
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NH3 absorption on stainless steel is a big issue w/ dilute mixtures

• NH3 adsorb on stainless steel => loss of NH3 in initial mixture

2
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Experimental Method: Mixture preparation
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Importance of surface passivation but more important to measure NH3

• Passivation to mitigate this issue (introduce NH3 to 
saturate surface and then vacuum/introduce the 
dilute mixture)

• Good and consistent passivation hard to obtain for 
dilute mixtures

• => NH3 measurement highly desired

Model (Mathieu and 
Petersen, 2015)
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Experimental Method: Mixture preparation
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Importance of surface passivation but more important to measure NH3

• Passivation to mitigate this issue (introduce NH3 to 
saturate surface and then vacuum/introduce the 
dilute mixture)

• Good and consistent passivation hard to obtain for 
dilute mixtures

• => NH3 measurement highly desired

Model (Mathieu and 
Petersen, 2015)
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Importance of accurate NH3 measurement
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Models are validated against data w/ passivation => How good are they?

Data: D.F. Davidson, K. Kohse-Hoinghaus, A.Y. Chang, R.K. Hanson, Int. J. Chem. Kinet. 22 (1990) 513–535.
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Experimental results

NH3 Pyrolysis – Alturaifi et al., CNF 2022
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No model able to predict NH3 pyrolysis
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Experimental results

47 reactions pyrolysis model developed
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0.5% NH3 in Ar 0.42% NH3 /2% H2 in Ar
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Experimental results

Critical importance of NH3 pyrolysis to model NH3 oxidation
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Experimental results

Critical importance of NH3 pyrolysis to model NH3 oxidation
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Experimental results

NH3 and NH3/H2 Oxidation – Alturaifi et al., PROCI 2022
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Experimental results

N2O from NH3 Oxidation – Alturaifi et al., Fuels Communication, 2022

18



19

Experimental results

N2O from NH3 Oxidation – Alturaifi et al., Fuels Communication, 2022
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R1: NH3 + O2 ⇄ NH2 + HO2

R5: NH3 + O ⇄ NH2 + OH



Model Comparisons

NH3 oxidation from N2O - WIP
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Chemiluminescence Diagnostic

Light emission from de-excitation of a radical at a specific wavelength

• Inexpensive

• Robust

• Reliable

• Allow determining where combustion takes place

• Can potentially allow for equiv. ratio diagnostic
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NH2* and NH* chemiluminescence measured using a PMT

Filters for NH2* and NH* were centered at 633 nm and 337 nm respectively. 

Chemiluminescence Diagnostic
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Chemiluminescence plots, normalized to the highest temperature.

Experimental results 

NH2* NH*
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Reactions exothermic enough to produce NH2* were found.

Reaction determination: NH2*

Difference in energy between ground and 

excited state of NH2 :

∆𝐸 =
𝑁𝐴ℎ𝑐

𝜆
= 189.818 kJmol−1

𝑵𝑨= Avogadro′s Number (6.022 x 1023 

mol−1), 

𝒉 = Planck’s constant (6.626 x 10−34
 

J.s), 

𝒄 = speed of light (3 x 108 m/s), 

𝝀 = wavelength

Reaction Heat of reaction (kJ 

mol-1)

NNH+NHN2+NH2 - 421.980

H2NN+ONH2+NO - 272.524

N2H3+NHN2H2+NH2 - 197.03

NH2+MNH+H+M 

(in reverse)

- 390.758
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De-excitation reactions added 

De-excitation Reactions

NH*

NH*  NH

NH* + Ar  NH + Ar

NH* + O2  NH + O2

NH* + H2O  NH + H2O

NH* + N2  NH + N2

NH* + H2  NH + H2

NH* + H NH + H

NH* + NH*  NH + NH

NH2*

NH2*  NH2

NH2* + Ar  NH2 + Ar

NH2* + O2  NH2 + O2

NH2* + H2O  NH2 + H2O

NH2* + N2  NH2 + N2

NH2* + H2  NH2 + H2

NH2* + H  NH2 + H

NH2* + NH2*  NH2 + NH2



Model (Stagni, 2023 + p.w.) vs Experiment NH2*

Relatively accurate modeling
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WIP: can presently model accurately 

shock tube OR flame data (CNRS 

Orleans)

=> Need to have good NH2 chemistry



Future directions

NH3 combustion radicals need to be measured
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HCs combustion: CO2, H2O, CO, H2, CH4, CH2O, CH3OH, C2H2, C2H4, C2H6, C2H5OH, 

CH3CHO….

NH3 combustion: N2, H2, H2O, N2O, NOx. N2Hx: instable/dangerous to work with

=> NH3 combustion chemistry for radicals more critical than for HCs

Combustion radicals:

• Difficult and costly to measure

• radical-radical interactions very hard for high-level calculation



Future directions

NH2 diagnostic being developed at TAMU
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• Key species in ammonia combustion 

• Several reaction pathways identified in literature:

• Path 1: NH2→ NH→N2O→N2,

• Path 2: NH2→HNO→NO→N2, 

• Path 3: NH2→NH→N2H2→NNH→N2

• Simultaneous N2O and NH2 diagnostics to better assess the relative importance of 

these pathways  
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Conclusions

▪ Results showed:
 

▪ Critical importance of accurate NH3 measurement in dilute experiments in 

stainless steel combustion apparatuses

▪ Critical importance of pyrolysis chemistry

▪ Models still in need of improvements

▪ Large discrepancies between models

▪ Overall, latest models are the most accurate

▪ More data & more work on the models are necessary (radicals)

▪ NH2 diagnostic under development
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Experimental Method: Shock Tube Facility 

Stainless Steel Shock Tube

High Pressure Section
Low Pressure Section:

Gas to be studied
7.62 cm

3.25 m 7.88 m

16.2 cm
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