Recent progresses on NH₃ combustion chemistry using optical diagnostics and their impact on kinetics model development

Olivier Mathieu, Sulaiman Alturaifi, Claire M. Grégoire, Maryam Khan-Ghauri, and Eric L. Petersen

> J. Mike Walker '66 Department of Mechanical Engineering Texas A&M University, College Station, USA

Ammonia Combustion Technical Working Group meeting agenda January 9, 2024

Introduction

Ammonia good candidate for carbon-free energy and energy storage

- Can be produced from renewable energy, air (N_2) , and H_2O
- Easy to store and transport
- Industrial scale infrastructure already in place

- But **poor** burning properties
 - Probably have to be mixed with other fuels
 - H₂ good candidate (from NH₃ cracking)

Introduction

Accurate kinetics model required to successfully implement NH₃ as a fuel

- Turbines and ICEs need to be designed around the fuel they use
- Global kinetics data (Ignition delay time, laminar flame speed) relate to key combustion properties in real-world applications => useful to set the dimensions
- Detailed chemistry needed for pollutants (NO, NO₂) and GHG (N₂O) emissions
- Numerous NH₃ models available in the literature
 - Which ones are the best?
 - How good are the models?
 - Several model reviews recently published
 - How to make better models?

Limitations of global kinetics data for model validation

Global kinetics data relate to real properties in real-world applications but...

• Global kinetics data (IDT)

- Measurement based on physical parameter (P increase)
- Qualitative measurement of chemical species (OH*, CH*...)
- => Models w/ different reaction schemes can achieve the same (good) predictions

[1] O. Mathieu et al., Combust. Flame 162 (2015) 554-570. [2] J. Otomo et al., *Int. J. Hydrogen Energy*, 43 (2018) 3004–3014.
[3] X. Zhang et al., *Combust. Flame*, 234 (2021) 111653. [4] A. Stagni et al., *React. Chem. Eng.*, 5 (2020) 696–711.

Limitations of global kinetics data for model validation

Speciation studies provide more constrain but...

- Speciation studies
 - Several species => higher level of constrain
 - 1 species = 1 data/condition

Importance of time-history profiles

Laser diagnostics => great tool for model validation

- Concentration time history: 1 species = multiple targets per condition
 - Induction delay time
 - Rate of formation/consumption
 - Final concentration level
 - Specific features
 - Max concentration
 - ...
- Limitations:
 - Experimental conditions (pressure)
 - Cost/complexity

Experimental Method: Species Measurement in a ST

Absorption Laser Diagnostic

- Quantum Cascade Lasers for:
 - NH₃ (957.839 cm⁻¹⁾
 - **N₂O** (2192.474 cm⁻¹)
 - − *H***₂O** (1348.186 cm⁻¹)

Beer-Lambert relation $\frac{I_t}{I_0} = exp^{(-k_v PLX_{CO})}$

Simultaneous species

– **NH**₃ (957.839 cm⁻¹⁾

N₂O (2192.474 cm⁻¹)
 Necessitate double pass

Experimental Method: Mixture preparation

NH₃ absorption on stainless steel is a big issue w/ dilute mixtures

• NH₃ adsorb on stainless steel => loss of NH₃ in initial mixture

Experimental Method: Mixture preparation

Importance of surface passivation but more important to measure NH₃

- Passivation to mitigate this issue (introduce NH₃ to saturate surface and then vacuum/introduce the dilute mixture)
- Good and consistent passivation hard to obtain for dilute mixtures
- => NH₃ measurement highly desired

Experimental Method: Mixture preparation

Importance of surface passivation but more important to measure NH₃

- Passivation to mitigate this issue (introduce NH₃ to saturate surface and then vacuum/introduce the dilute mixture)
- Good and consistent passivation hard to obtain for dilute mixtures
- => NH₃ measurement highly desired

Importance of accurate NH₃ measurement

Models are validated against data w/ passivation => <u>How good are they?</u>

NH₃ Pyrolysis – Alturaifi et al., CNF 2022

No model able to predict NH₃ pyrolysis

47 reactions pyrolysis model developed

0.5% NH₃ in Ar

0.42% NH_3 /2% H_2 in Ar

Experimental results

Critical importance of NH₃ pyrolysis to model NH₃ oxidation

15

Experimental results

Critical importance of NH₃ pyrolysis to model NH₃ oxidation

NH₃ and NH₃/H₂ Oxidation – Alturaifi et al., PROCI 2022

N₂O from NH₃ Oxidation – Alturaifi et al., Fuels Communication, 2022

Experimental results

 N_2O from NH_3 Oxidation – Alturaifi et al., Fuels Communication, 2022

R1: $NH_3 + O_2 \rightleftharpoons NH_2 + HO_2$ R5: $NH_3 + O \rightleftharpoons NH_2 + OH$

Model Comparisons

NH_3 oxidation from N_2O - WIP

Factor ~3.5 between 2023 models

Chemiluminescence Diagnostic

Light emission from de-excitation of a radical at a specific wavelength

- Inexpensive
- Robust
- Reliable
- Allow determining where combustion takes place
- Can potentially allow for equiv. ratio diagnostic

NH₂* and NH* chemiluminescence measured using a PMT

Filters for NH_2^* and NH^* were centered at 633 nm and 337 nm respectively.

Experimental results

Chemiluminescence plots, normalized to the highest temperature.

TEXAS A&M ENGINEERING EXPERIMENT STATION

Reaction determination: NH₂*

Reactions exothermic enough to produce NH_2^* were found.

Difference in energy between ground and	
excited state of NH_2 :	
$\Delta E = \frac{N_A h c}{\lambda} = 189.818 \text{ kJmol}^{-1}$	Reaction

N_A = Avogadro's Number (6.022 x 1023	
$mol^{-1}),$	

 \boldsymbol{c} = speed of light (3 x 108 m/s),

 λ = wavelength

Reaction	Heat of reaction (kJ mol ⁻¹)
$NNH+NH \Longrightarrow N_2+NH_2$	- 421.980
H₂NN+O与NH₂+NO	- 272.524
$N_2H_3+NH \leftrightarrows N_2H_2+NH_2$	- 197.03
NH₂+M≒NH+H+M (in reverse)	- 390.758

De-excitation Reactions

De-excitation reactions added

NH₂*

 $NH_2^* \leftrightarrows NH_2$

 $NH_2^* + Ar \leftrightarrows NH_2 + Ar$

 $NH_2^* + O_2 \leftrightarrows NH_2 + O_2$

 $NH_2^* + N_2 \leftrightarrows NH_2 + N_2$

 $NH_2^* + H_2 \leftrightarrows NH_2 + H_2$

 $NH_2^* + H \leftrightarrows NH_2 + H$

 $NH_2^* + H_2O \leftrightarrows NH_2 + H_2O$

 $NH_2^* + NH_2^* \leftrightarrows NH_2 + NH_2$

Model (Stagni, 2023 + p.w.) vs Experiment NH₂*

Relatively accurate modeling

WIP: can presently model accurately shock tube **OR** flame data (CNRS Orleans)

=> Need to have good NH₂ chemistry

NH₃ combustion radicals need to be measured

HCs combustion: CO_2 , H_2O , CO, H_2 , CH_4 , CH_2O , CH_3OH , C_2H_2 , C_2H_4 , C_2H_6 , C_2H_5OH , $CH_3CHO...$

NH₃ combustion: N₂, H₂, H₂O, N₂O, NOx. N₂H_x: instable/dangerous to work with

=> NH₃ combustion chemistry for radicals more critical than for HCs

Combustion radicals:

- Difficult and costly to measure
- radical-radical interactions very hard for high-level calculation

Future directions

NH₂ diagnostic being developed at TAMU

- Key species in ammonia combustion •
- Several reaction pathways identified in literature: ٠
 - Path 1: $NH_2 \rightarrow NH \rightarrow N_2O \rightarrow N_2$,
 - Path 2: $NH_2 \rightarrow HNO \rightarrow NO \rightarrow N_2$,
 - Path 3: $NH_2 \rightarrow NH \rightarrow N_2H_2 \rightarrow NNH \rightarrow N_2$ •

H_oNN

NOx formation

Ammonia oxidation features in a Jet Stirred Flow Reactor. The role of NH₂ chemistry.

Pino Sabia^a, Maria Virginia Manna^{a,b,*}, Antonio Cavaliere^b, Raffaele Ragucci^a, Mara de Joannon^a

- ^a Istituto di Ricerche sulla Combustione C.N.R, Napoli, Italy ^b Università degli Studi di Napoli, Federico II, Napoli, Italy
- Simultaneous N₂O and NH₂ diagnostics to better assess the relative importance of ۲ these pathways

Results showed:

- Critical importance of accurate NH₃ measurement in dilute experiments in stainless steel combustion apparatuses
- Critical importance of pyrolysis chemistry
- Models still in need of improvements
- Large discrepancies between models
- Overall, latest models are the most accurate
- More data & more work on the models are necessary (radicals)
- NH₂ diagnostic under development

Acknowledgments

TURBOMACHINERY LABORATORY TEXAS A&M ENGINEERING EXPERIMENT STATION

National Science Foundation

(Award # 20308433)

Stainless Steel Shock Tube

