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Comprehensive approach to geochemical optimization
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Wachtmeister et al (2017) Nat. Resour.Res

What chemical parameters control scale 
in different basins?

How can we mitigate 
unconventional 

scale?

Can we monitor scale 
and fractures 

simultaneously?

Can we manipulate reactions to improve 
flow  through altered zone?
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Geochemistry Drivers

Improve efficiency and recovery factors
Improve water reuse 
• National energy security
• Environmental footprint
• Water security
• Economics of production

Carlsbad Current-Argus, May 19, 2019

Ryan Flynn, executive director of the New Mexico Oil and Gas Association, a
trade group representing up to 900 oil and gas operators in New Mexico, said
water reuse is the industry’s “No. 1” priority, as fresh water
becomes scarce, and the industry looks to cut back on its
environmental impact.

Matrix accessMineral Scale

Task 2 Task 3



Field labs

MSEEL

Gas
Permian

Oil

HFTS

Marcellus

• Mineralogy, rock microstructure
• Injection sequence, fluid chemistry, water supply (fresh vs reuse)
• Universal problems: Iron scale, low recovery
• Play specific scale problems

• Strontium- Permian
• Barium/Radium- Marcellus

Geochemistry varies across basins 
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Industrial partners

Permian / Midland

Marcellus / Utica



Collaborations, partnerships, and acknowledgements
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• NETL
• LBNL
• LLNL
• Pioneer Natural Resources
• Equinor
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Geochemistry?

• Geochemistry controls permeability
permeability (under explored)
• Dissolution (general): means to increase permeability, and to initiate 

massive chemical reactions
• Precipitation (general): carbonates, sulfates, iron-bearing minerals 

oxides
• Ppt reduces permeability by occluding fracture apertures and by 

coating fracture surfaces
• Fe redox: can be driven by  DO and pH changes

Technical status
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Geochemistry?

• Geochemistry controls permeability
permeability (under explored)
• Dissolution (general): means to increase permeability, and to initiate 

massive chemical reactions
• Precipitation (general): carbonates, sulfates, iron-bearing minerals 

oxides
• Ppt reduces permeability by occluding fracture apertures and by 

coating fracture surfaces
• Fe redox: can be driven by  DO and pH changes

Task 2: Scale Geochemistry
2.1 Scale prediction

What chemical parameters control scale in different 
basins?

2.2 Scale mitigation
Develop chemical strategies to mitigate scale.

2.3 In-situ scale monitoring
Can we monitor scale and fractures 

simultaneously?
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Geochemistry?

• Geochemistry controls permeability
permeability (under explored)
• Dissolution (general): means to increase permeability, and to initiate 

massive chemical reactions
• Precipitation (general): carbonates, sulfates, iron-bearing minerals 

oxides
• Ppt reduces permeability by occluding fracture apertures and by 

coating fracture surfaces
• Fe redox: can be driven by  DO and pH changes

Task 2: Scale Geochemistry
2.1 Scale prediction

What chemical parameters control scale in different 
basins?

Jew Spielman-SunLi Noël



Result 1. Iron scale precipitation in Altered Zone
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The problem: Scale 
precipitation in altered zone 
chokes hydrocarbon 
production

The questions: 
• Reaction penetration 

depth?
• Controlling factors?
• How are matrix 

permeability & diffusivity 
affected? 
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id Unaltered matrixAltered 

zone

μm? cm?

Fluid

Gas/Oil
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Result 1. Iron scale precipitation time lapse

Fe

Fe

Fe

TIM
E• Time-lapse reactors cover wide

range of chemical conditions. 
• Complements NETL work
• Characterization: 

• Fe(III)-oxide scale thickens 
over time in spite of 
persistent acidic conditions 
(first time observed!)

• Fe-rich clay mineral scale 
precipitated (first time 
observed!)

XRF chemical mapping
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Result 1. Iron scale precipitation time lapse

Fe

Fe

Fe

TIM
E

XRF chemical mapping

• Time-lapse reactors cover wide
range of chemical conditions. 

• Complements NETL work
• Characterization: 

• Fe(III)-oxide scale thickens 
over time in spite of 
persistent acidic conditions 
(first time observed!)

• Fe-rich clay mineral scale 
precipitated (first time 
observed!)
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Li et al. URTeC, 2019

Marcellus

No bitumen leaching 
from shale

w/ bitumen 
(match with observation)

Result 2. Iron scale: Reactive transport modeling

Simulated 
by model

Fe
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Fe 
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Fluid Shale

Advection
Diffusion
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HCl
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(fast)
(slow)
(fast)
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Fluid Shale
Marcellus Eagle Ford

No bitumen leaching 
from shale

No bitumen leaching 
from shale

w/ bitumen 
(match with observation)

w/ bitumen 
(match with observation)

100 μm

• Bitumen increases Fe(III) scale precipitation
• Predicted mitigation: Guar gum in frac fluid 

can adsorb Fe and reduce scaling

Result 2. Iron scale: Reactive transport modeling
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Marcellus Eagle Ford

CT
imaging

Result 3. Barite scale: Reactive transport modeling

• pH strongly affects rates – fast at acidic conditions
• Neutral pH: only slower rates can match with observations
• Barite suppressed by chemicals in the frac fluid 

Predicted 
barite scale 
precipitation

Predicted 
barite scale 
precipitation

Barite PoresBarite
pores

Acidic pH Neutral pH
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Geochemistry?

• Geochemistry controls permeability
permeability (under explored)
• Dissolution (general): means to increase permeability, and to initiate 

massive chemical reactions
• Precipitation (general): carbonates, sulfates, iron-bearing minerals 

oxides
• Ppt reduces permeability by occluding fracture apertures and by 

coating fracture surfaces
• Fe redox: can be driven by  DO and pH changes

Reaction rates extremely important

…controlled by pH, fluid composition
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Geochemistry?

• Geochemistry controls permeability
permeability (under explored)
• Dissolution (general): means to increase permeability, and to initiate 

massive chemical reactions
• Precipitation (general): carbonates, sulfates, iron-bearing minerals 

oxides
• Ppt reduces permeability by occluding fracture apertures and by 

coating fracture surfaces
• Fe redox: can be driven by  DO and pH changes

Task 2: Scale Geochemistry
2.1 Scale prediction

What chemical parameters control scale in different 
basins?

2.2 Scale mitigation
Develop chemical strategies to mitigate scale.

Emphasize incremental optimization

2.3 In-situ scale monitoring
Can we monitor scale and fractures 

simultaneously?



Result 4: Acid swap to control barite scale
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The problem: Ba release from mud
• Drilling mud is rich in barium
• Ba dissolved by HCl can precipitate in 

reservoir
• NaCl promotes barite dissolution

The solution: acid swap
• Modeling: H2SO4 should shut down Ba 

leaching at the source

• But: need to control CaSO4 precipitation: 
Citrate should work

Barite 
dissolution

Precipitation in 
fracture system

Ba transport
to fractures

X
X

X
Jew et al. URTeC, 2019



Result 4. Lab tests suggest incremental acid swap works
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850-fold 
decrease

Is Ba leaching reduced?
• Yes!; 850-fold decrease in 

Ba leaching!

Does Citrate control Ca?
• Yes! 
• Doesn’t promote Ba 

release

Can we predict with 
models?
• Yes! 21

Field test scheduled August/September 
with Equinor North America for 

Utica play in Ohio

Jew et al. URTeC, 2019



Model-based iron scale mitigation in 2020

22

Model–guided sensitivity analyses: ID most important parameters

Use the model to optimize scale inhibitor usage

Verify in laboratory experiments

Continue basin-specific experimental observations
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Geochemistry?

• Geochemistry controls permeability
permeability (under explored)
• Dissolution (general): means to increase permeability, and to initiate 

massive chemical reactions
• Precipitation (general): carbonates, sulfates, iron-bearing minerals 

oxides
• Ppt reduces permeability by occluding fracture apertures and by 

coating fracture surfaces
• Fe redox: can be driven by  DO and pH changes

Task 2: Scale Geochemistry
2.1 Scale prediction

What chemical parameters control scale in different 
basins?

2.2 Scale mitigation
Develop chemical strategies to mitigate scale.

2.3 In-situ scale monitoring
Can we monitor scale and fractures 

simultaneously?

Vanorio Ding Clark

Stanford Geophysics



Next generation shale geochemistry needs:

The Vision: In the field, in real time:
Monitor and mitigate scale precipitation
… and optimize porosity and permeability

The problem: Currently no way to monitor these properties in 
the field!

The solution: Develop new acoustic-based technologies for 
shale geochemistry

24



S-wave velocity: Sensitive to mineral scale & porosity
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This example:
13% increase in VS

after salt 
Precipitation

This approach should work well for shale.

Does it?...

Scale 
clogging

Stiffening 
(cementation)

pre

post

S-wave velocity: Sensitive to mineral scale & porosity



Result 5. Monitoring multiple dissolution processes
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Detected and distinguished two different 
processes during first set of tests!

2 μm

Micro-CT Image

microfracture

Dissolution causes velocity decrease and S-wave splitting

Marcellus Formation, PA
Rampton & Hammack, 2018

pre

pre

Porosity creation (~1%)
fast S-wave trend

slow S-wave trend

Elastic weakening 
across microfractures

post

post

Highly relevant for field application!



Future work: End-member scenarios

Investigate the acoustic signatures of dominant dissolution or scaling

28

Strong dissolution
HCl acid (pH<2),

reservoir condition

Strong scaling
HCl acid (pH~5), 
BaCl2 + Na2SO4, 

reservoir condition

Porosity creation and elastic weakening
Pore clogging and cementation

1 mm
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Geochemistry?

• Geochemistry controls permeability
permeability (under explored)
• Dissolution (general): means to increase permeability, and to initiate 

massive chemical reactions
• Precipitation (general): carbonates, sulfates, iron-bearing minerals 

oxides
• Ppt reduces permeability by occluding fracture apertures and by 

coating fracture surfaces
• Fe redox: can be driven by  DO and pH changes

Task 3: Optimize porosity
Systematically manipulate altered zone 

porosity to improve permeability

Kovscek Gundogar

Stanford Energy Resources Engineering



The problem: Injection conditions are far from optimal for 
producing from matrix.
• Promotes scale formation 
• Size of acid slug
• pH
• Salinity

30

Manipulation of matrix accessibility

Hydrocarbon

SC
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The problem: Injection conditions are far from optimal for 
producing from matrix
• Promotes scale formation 
• Size of acid slug
• pH
• Salinity

The solution: Manipulate chemistry & pressure to 
maximize Damköhler, Peclet numbers
• Promotes worm-holing across altered zone
• Provides target to translate lab results to the field
• Avoid conditions that promote scaling 

Damköhler = reaction rate / convection rate
Peclet = convection rate / diffusion rate

31
Fr

ac
tu

re

Hydrocarbon

M
at

rix

Large Damköhler; 
Fast reaction

Large Peclet; 
Advection dominated

Manipulation of matrix accessibility



Result 6. Core-flood permeability decreases w/porosity

32

Brine (0.5 M 
NaCl) injection:

HFF (pH 2.0) 
injection:

• Decrease in porosity of both matrix & fractures
• Lower effluent volume during HFF injection
• Clay or iron scale precipitation? Clay swelling?
• SEM/EDS/XRF analysis of shale fabric in progress

𝜙𝜙=0.0234

Currently combining our findings with those from 
other subtasks to determine the dominant factors

𝜙𝜙=0.023

3D Porosity reconstructions using fluid substitution with 
Krypton (large x-ray attenuation)

Perm: 7.12 uD Perm: 1.21 uD

Before stim fluid injection After stim fluid injection
𝜙𝜙=0.010
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Ongoing work

Develop manipulation strategies that 
enhance matrix accessibility using

• Chemical hypotheses from Task 2, prior
• Flow-through-matrix core floods guided by 

brine and HFF from Task 2.1-2.3
• In situ porosity maps from CT
• Multiscale image analysis to highlight 

changes to shale fabric

Reactive transport simulations (Pe
≈100)  guided by Task 2.1.2 

• to better analyze experiments
• to scale from laboratory to field

Bone Spring top 
and bottom 

outcrop cores

Marcellus 
carbonate- and 
clay-rich cores 
from MSEEL



Team

Spielman-SunLi

Bargar Maher BrownKovscek Vanorio

NoëlGundogar

Rock 
physics

Fluid 
transport

Fluid 
transport

Rock 
physics

Ding

Rock 
physics

Clark

Jew
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Thank 
you!
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Geochemistry?

• Geochemistry controls permeability
permeability (under explored)
• Dissolution (general): means to increase permeability, and to initiate 

massive chemical reactions
• Precipitation (general): carbonates, sulfates, iron-bearing minerals 

oxides
• Ppt reduces permeability by occluding fracture apertures and by 

coating fracture surfaces
• Fe redox: can be driven by  DO and pH changes

Project Management 
slides



Major Accomplishments to date

 Published 11 manuscripts; 1 in review; 2 in preparation
 1 Patent on acid-swap technology for barite scale mitigation 
 27 presentations (4 invited) at national/international meetings
 Work with 2 industrial partners to use new scale mitigation 

knowledge in industrial practices
 Field testing barite scale mitigation practices
 Discovered/quantified organic-mediated Fe oxidation and scale 

precipitation mechanisms
 Introduced new technologies for unconventional geochemistry 

monitoring



Lessons learned

• Modeling is crucial to testing process models and finding 
weaknesses in understanding of shale geochemistry

• Comparing shale-fluid reactivity across basins, compositions 
is critical to developing geochemical and geomechanical
insights

• Laboratory-based surface imaging techniques (SEM) can not 
be used to study reactions/precipitation occurring in shale 
matrix



Synergies & Synergy Opportunities

Existing collaborations:
• Fracture-scale geochemistry NETL (A. Hakala, C. Lopano)

• Deep-water offshore NETL (I. Gamwo)

• Field laboratories MSEEL, HFTS

• Multi-length scale research LBNL (Steefel, Deng), LLNL (Morris)

• Industrial partnerships Pioneer Natural Resources

Equinor North America

• Academic partnerships Penn State (S. Lvov, D. Hall)

New collaborations we are pursuing:
• Neutron scattering on shale systems LANL (H. Xu)



Project Summary

https://netl.doe.gov/node/6301:
This project is focusing on two strategic geochemistry-based research thrusts where new knowledge can 
immediately begin to improve unconventional gas and oil recovery factors. First, we are evaluating mineral 
scale precipitation processes specific to major shale formations and fracture stimulation practices and 
developing geochemistry-based approaches to mitigate it. This knowledge has an additional benefit of 
improving our ability to reuse flowback and produced water without causing formation damage. The focus of 
this work will be to compare and contrast conditions specific to Marcellus (dry gas) and Midland (oil) basins. 
We are also conducting research to understand how geochemistry can be used to manipulate the thickness 
and permeability of the altered zone by focusing on controlling microscale chemical and mechanical features 
such as secondary porosity created during stimulation, the connectivity of this porosity across the altered 
zone, and irreversible mineral scale precipitation within the altered zone. Our ultimate goal is to develop 
approaches to manipulate the thickness and permeability of the altered zone during stimulation to increase 
access to matrix and thus production recovery factors.
To monitor scale precipitation and microstructure evolution within shales, we are using a combination of 
laboratory, synchrotron X-ray imaging, computed tomography, electron microscopy, and seismic techniques. 
Research is being performed in consultation with industrial experts to help facilitate technology transfer from 
the laboratory to the field.

Next steps:
• Develop mitigation strategies

https://netl.doe.gov/node/6301
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Geochemistry?

• Geochemistry controls permeability
permeability (under explored)
• Dissolution (general): means to increase permeability, and to initiate 

massive chemical reactions
• Precipitation (general): carbonates, sulfates, iron-bearing minerals 

oxides
• Ppt reduces permeability by occluding fracture apertures and by 

coating fracture surfaces
• Fe redox: can be driven by  DO and pH changesAppendices 



Benefit to the Program

Program goals addressed:
• Improve recovery factors
• Improve water reuse/recycling
• Lay foundation for next generation 

geochemical control of subsurface 
mineral scale and porosity

• Lay foundation for transformational 
advancement of unconventional 
resource recovery 

Fracture-fluid interfaces are 
crucial



Project goals: Develop new knowledge about critical mineral scale and 
porosity generating processes. Use this information enable transformation 
industrial processes to IMPROVE EFFICIENCY and WATER REUSE

(i)  Identify chemical parameters that control scale in different basins.
(ii) Develop chemical strategies to mitigate scale.
(iii) Develop next-generation geochemistry tools to monitor & mitigate subsurface 

mineral scale precipitation and optimize porosity in real time in the field
(iv) Systematically manipulate altered zone porosity to improve permeability

Success criteria:
• On-time execution of PMP
• Presentations at industrial and scientific meetings
• Publications in major journals, including URTeC proceedings
• Interactionions with industry
• Patent fiilings

Project overview



44

Organization Chart, Expertise, and Roles

SLAC director
Chi-Chang Kao

SSRL director
Paul McIntyre

Task lead Postdoctoral scholar

Task 1.0: John Bargar Program management

Task 2.1: Adam Jew Eleanor Spielman-Sun
Geochemistry

Task 2.2: Kate Maher Qingyun Li
Reactive 
transport

Task 2.3: Tiziana Vanorio Jihui Ding
Rock physics

Task 3.0: Tony Kovscek: Asli Gundogar
Fluid flow, 
reservoir 
engineering

Senior Scientist,
Research Manager

John Bargar

Background: Geochemistry
synchrotron-based 

spectroscopy, imaging

SSRL science director
Britt Hedman
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Basin-specific water formulations

• ‘Fresh’ and ‘reuse’ water formulations

Midland, TX Reeves Co., TX MSEEL
Concentration 

(% mass) 
excludes 
proppant

Concentration 
(% mass) 
excludes 
proppant

Concentration (% 
mass) excludes 

proppantIngredient Ingredient Ingredient
Water 98.30879874 Water 97.10902243 Water 99.70400729
Cupric Chloride 0.000213507 Guar gum 0.17765487 Ammonium sulfate 0.017144809
Thioglycol 0.002314867 Amorphous silica 0.000893534 Acrylamide* 0.012636612
Methyl Alcohol 0.040026969 Glutaraldehyde 0.014138192 Glutaraldehyde 0.0043602
Kerosene 0.202809304 Methanol 0.014138192 Guar gum 0.003130692
C-11 to C-14 alkanes 0.001663108 Ammonium perulfate 0.008743058

Polymer 2-acrylamido-2-
methylpropanesulfonic acid

0.001354736
Propylene pentamer 0.052522755 Potassium metaborate 0.135692715
Methyl Alcohol 0.010506799 Potassium hydroxide 0.013436938
2-Butoxyethanol 0.030632655 Ethylene glycol 0.013436938

Ethanol 2,2',2"-nitrilotris 1,1',1"-
tris(dihydrogen phosphate)

0.001935337
Ammonium Persulfate 0.083425104 Potassium hydroxide 0.010643231
Gluteraldehyde 0.010473087 2-butoxyethanol 0.020992388
Methanol 0.006281605 2-propanol 0.020992388 Sodium erythorbate 0.000831056
Polyphosphonic acids 0.006629958 Acetic acid 0.004309321 Urea 0.000831056
Isopropanol 0.006888414 Citric acid 0.002578806

Alkyl(c12-16) dimethylbenzyl 
ammonium chloride

0.000774135
Propargyl Alcohol 0.006888414 Methanol 0.003766414
Methanol 0.006888414 Propargyl alcohol 0.000757807
Isooctyl Alcohol 0.006888414 Ammonium perulfate 0.0085734 Trisodium ortho phospate 0.000580601
Xylene 0.006888414 15% Hydrochloric Acid Methanol 0.000466758
15% Hydrochloric acid Fatty acids, Tall-oil 0.000295993

Thiourea polymer with 
formaldehyde and 1-

phenylethanone

0.000250455
Also known as 2-
mercapteoethanol

Also known as 
polyphosphoric acid Sodium sulfate 0.000193534

Ethylene glycol 0.000170765
Also known as 2-ethyl-1-
hexanol Ethoxylated alcohols 0.000113843

Ethanol 9.10747E-05
Propargyl alcohol 7.96903E-05
2-Propenamid 4.55373E-05
Hexadec-1-ene 2.27687E-05
Tetrasodium EDTA 2.27687E-05
Diammonium peroxidusulphate 1.13843E-05
1-Octadecene 1.13843E-05
15 % Hydrochloric Acid

Midland, TX Reeves Co, TX MSEEL
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Basin-specific stimulation recipes

MSEEL Midland
Fluid Time Volume % Fluid Time Volume %
7.5% HCl 4.2 3000.1 0.84 15% HCl 5 24 0.34
Slickwater 21.5 41942 11.69 Slickwater 23 1143 16.14
Slickwater 3.2 13196 3.68 Slickwater 7 595 8.40
Slickwater 3.4 13995 3.90 Slickwater 7 595 8.40
Slickwater 4.6 18525 5.16 Slickwater 7 560 7.91
Slickwater 5.8 23105 6.44 Slickwater 5 500 7.06
Slickwater 9 35286 9.83 Slickwater 6 500 7.06
Slickwater 6.2 23949 6.67 Slickwater 6 500 7.06
Slickwater 5.8 23959 6.68 Slickwater 6 537 7.58
Slickwater 4.6 18528 5.16 Slickwater 7 571 8.06
Slickwater 4.6 18527 5.16 Slickwater 7 524 7.40
Slickwater 8.3 32388 9.03 Slickwater 7 570 8.05
Slickwater 24.5 92451 25.76 Slickwater 6 461 6.51

Midland, TXMSEEL

All tasks using common 
shale sources, fluids & 
stimulation sequences
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Workflow for a basin-specific approach

Samples
1” Marcellus well 

cores

Pre-reaction characterization
porosity, permeability, velocity, 

µ-CT/SEM

Reaction
basin fluid, reservoir 

conditions

• 40 ml frac fluid
• 0.13 wt.% HCl
• 78 bar, 80°C, 3 weeks
• pre pH~2, post pH~5

Carbonate-rich 
sample (31 wt.%)

No-carbonate 
sample (~ 0 wt.%)

Bedding

Bedding

Post-reaction characterization
fluid chemistry analysis 

P-wave

fast  S-wave

slow S-wave
(sensitive to 

bedding)
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Marcellus outcrop (1” dia x 3” long)

Shale fabric characterization using 
multiscale/multimodal imaging 

SEM/EDS/XRF 
Mosaic

CT/µCT of fluid 
penetration

(Aljamaan et al., 2017)
* Light areas are more dense.

Workflow: optimize for FLOW across altered zone

Prepare cores
- parallel to bedding planes

Characterize before & after
- whole core µCT 
- CT/SEM/EDS
- He pyc., MIP, XRD
- Effluent fluid chemistry

Workflow

React with fluids
- Core flood flow through
- Monitor w/CTCT

Pre-Vacuum   Kr Inj Re-Vacuum 
 Brine Inj HFF Inj (at 80°C)
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