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• Review polymeric CO2-membrane current and potential performance 
characteristics

• Consider the influences of  alternative PC power plant CO2-membrane 
process configurations and operating conditions

• Estimate PC power plant CO2-membrane post-combustion performance 
factors: membrane area, permeate CO2 purity, power plant efficiency

• Generate cost of  electricity results that inform the potential impacts of  
the membrane material performance, and process configurations

Scope of Study
Presentation Objective

• Provide guidance, based on NETL perspective, to developers of membrane materials and CO2-membrane 
capture systems for post-combustion CO2 capture

• Summarize results: details in supporting documentation
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• Potential benefits of  membrane-based post-combustion CO2 capture
• No power plant steam extraction is needed
• No circulating medium is needed (solvent, adsorbent, sorbent)
• Low-cost, polymer-based membrane materials are commercially available for small-scale 

applications 

• Goals of  membrane-based post-combustion CO2 capture development
• Reduce the large membrane surface area currently needed
• Reduce the large number of  membrane modules currently needed
• Improve the low CO2-permeate purity that results for high (90%) CO2 separation 

efficiency
• Eliminate the need for process enhancement by an air-sweep membrane, and/or minimize 

the negative impacts on the PC furnace performance that may result

Background
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• Important CO2-membrane material 
characteristics are the CO2 permeance, 
KCO2, and the selectivity, α, of  CO2
relative to the other gas constituents 
(N2, H2O, O2, and Ar)

• Robeson [1] provides a correlation 
relating membrane permeability and 
selectivity, based on collected test data

• Performance data for membranes 
assumed in this study is characterized 
by the Robeson upper bound

CO2-Membrane Characteristics

1. L. M. Robeson, The upper bound revisited, J. Membr. Sci. 320 (2008) 390-400
2. B. W. Rowe, L. M. Robeson, B. D. Freeman, D. R. Paul, Influence of temperature on the upper bound: Theoretical considerations and comparison with experimental results, J. Membr. Sci. 
360 (2010) 58-69
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• KCO2 is corrected for application at our power plant operating temperature (53-
63°C) in this assessment [2]



7

Maximum Polymeric Membrane CO2 Permeance (gpu) 
from Robeson (at 53-63°C)

CO2-Membrane Characteristics (cont’d)

Robeson Upper Bound Permeance
Selectivity 
(αCO2/N2)

Membrane Film Thickness (μm)
1 0.5 0.25 0.1

25 2,022 4,044 8,087 20,218

50 273 546 1,092 2,731

100 37 74 148 369

200 5 10 20 50
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• PC flue gas contains CO2, N2, O2, Ar, and significant water vapor
• Polymeric membranes are generally sensitive to water vapor: Rubbery 

polymers are less sensitive; glassy polymers are more sensitive 
(permeance decreases with increased water vapor) [3]

• A sensitivity study on the impact of  water showed that for a single, counter-current 
membrane configuration, membrane area requirements per mole of  CO2 to achieve 90% 
CO2 capture could vary by as much as 35%, with permeate purity varying by 7%

• Polymeric membrane KCO2 and selectivity assumptions applied in study
• α CO2/H2O = 0.2 (water vapor permeates rapidly)
• αCO2/N2 = αCO2/O2 = αCO2/Ar
• Permeance or selectivity are not influenced by operating pressure, or interactions with 

other flue gas constituents (including gas contaminants and water vapor)

CO2-Membrane Study Characteristics

3. B. T. Low, L. Zhao, T. C. Merkel, M. Weber, D. Stolten, A parametric study of the impact of membrane materials and process operating conditions on carbon capture from humidified flue 
gas, J. Membr. Sci. 431 (2013) 139-155
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• This study considers polymeric membranes having αCO2/N2 ranging from 
25 to 100

• Permeance values above the Robeson upper bound represent advanced membrane 
materials of  unknown properties and cost

CO2-Membrane Study Characteristics 
(cont’d)
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• The “membrane-module” is a commercial packaging of  membrane 
surface (hollow fiber bundles, spiral-wound units, flat plate units, tubular 
units) within a containment structure 

• These would be deployed as a large array of  parallel membrane-modules 
(possibly hundred to thousands, depending on the membrane-module gas 
flow capacity)

• The array of  membrane-modules requires a distribution system of  
headers, manifolds, valves, and piping to transition the gas flows between 
the membrane-module array and the large power plant gas ducting

• We account for this membrane-module sub-system cost in a simplified manner

Membrane-Module Design
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• Any membrane-surface 
configuration (spiral-wound, 
hollow fibers, plate, tubular) can 
be used so long as it can promote 
counter-current contacting, can 
operate with acceptable pressure 
drop, can tolerate the membrane-
surface pressure difference, and 
can be housed as a sufficiently 
large membrane-module

Membrane-Module Performance 
Modeling
Membrane-Module Flow Configuration and Surface Configuration
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• The DOE/NETL baseline conventional PC power plant with conventional 
capture serves as the reference plant for this study [4]

• The DOE/NETL baseline flue gas flow, composition, temperature, and 
pressure (using a fixed coal feed rate for all cases) are applied in the study

• CO2 capture process performance requirements 
• Net CO2 capture: 90% of  coal feed carbon 
• CO2 product minimum purity: 95 vol% CO2 with ≤10 ppmv O2 
• CO2 product delivery pressure: 2200 psig
• PC furnace secondary air O2 content: 18 vol% [5] (for air-sweep membrane 

applications)
• Range of  membrane CO2 permeance and selectivity considered: 500 to 20,000 

gpu; αCO2/N2 25 to 100

PC Power Plant Assessment Basis

4. National Energy Technology Laboratory (NETL). Cost and Performance Baseline for Fossil Energy Plants, Volume 1a: Bituminous Coal (PC) and Natural Gas to Electricity, Revision 3. Pittsburgh, 
PA : DOE/NETL 2015/1723, April 2015
5. Babcock & Wilcox Company Power Generation Group, Effect of CO2-enriched Air on Combustion Performance: Pilot-scale Evaluation, DOE Contract No. DE-NT0005795, December 17, 2013
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• Independent flue gas membrane modules with low-pressure flue gas and 
permeate-side vacuum (“independent FG membrane” configuration)

• Flue gas membrane modules coupled with air-sweep membrane modules, 
with low-pressure flue gas and permeate-side vacuum (“combined air-
sweep” configuration)

• Both configurations above with flue gas pressurization
• Independent FG membrane modules with added membrane module 

stages for permeate-side enrichment, with low-pressure flue gas

PC Power Plant Assessment Basis: CO2
Capture Process Alternatives
Five CO2 Separation Process Configurations Considered
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Processes with Low-Pressure Flue Gas
Independent FG Membrane Configuration with Low-Pressure Flue Gas
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Processes with Low-Pressure Flue Gas 
(cont’d)

Combined Air-Sweep Configuration with Low-Pressure Flue Gas
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Processes with Low-Pressure Flue Gas 
(cont’d)
Configuration Influence on Power Plant Efficiency Results

• CO2 permeance does not influence the 
power plant efficiency

• Increased selectivity increases the 
power plant efficiency

• The combined air-sweep configuration 
results in higher power plant efficiency 
than the independent FG membrane 
configuration

• Advanced membrane materials having 
very high selectivity (>100) might 
minimize this difference
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Processes with Low-Pressure Flue Gas 
(cont’d)
Independent FG Membrane Configuration Area Results

• CO2 permeances >1,000 
gpu are limited to 
αCO2/N2 of  25 to 50  

• Higher selectivity (>50 -
100) will require 
advanced polymeric 
materials

• The curves show a 
trend for increased 
membrane area with 
higher selectivity

• Limited area benefit for 
permeances > 8,000 gpu
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Processes with Low-Pressure Flue Gas 
(cont’d)

Combined Air-Sweep Configuration Area Results

• The curves are similar 
in trend to the 
independent flue gas 
membrane 
configuration 

• The combined air-
sweep configuration 
results in slightly higher 
total membrane area 
than the independent 
FG membrane 
configuration
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Processes with Low-Pressure Flue Gas 
(cont’d)

Independent Membrane Configuration Combined Air-Sweep Membrane Configuration

Membrane module cost 50 $/m2; Membrane replacement cost 20 $/m2; Membrane life 5 years
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• For low pressure operation using current membrane materials, the air sweep 
configuration offers cost benefits over the independent membrane 
configuration; as membrane performance improves, the system configuration 
benefits approach an equivalent cost result

• Flue gas pressurization reduces the total membrane area, and plant efficiency; 
not cost-effective development options

• Membrane staging increases permeate purity, gas flow rate to the membrane 
and the compression work, reducing the power plant efficiency—not a cost-
effective development option

• Based on the results, developer focus should be on:  
• Low-pressure membrane CO2 capture processes
• Options to eliminate the air-sweep membrane, or to minimize its PC furnace impacts, especially 

for power plant retrofit applications
• Development of  membrane materials having higher CO2 permeance (>3,000 gpu) and with 

selectivity approaching 100

Findings
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• A general COE reduction graph has been developed that allows the COE 
reduction for low-pressure configurations to be estimated as a function of:

• The type of  membrane configuration (independent membrane, or combined air-sweep) 
• The cost of  the membrane-unit (Cmem)
• The cost of  membrane-unit replacement (Creplace)
• The membrane-unit life (Tlife)
• The membrane CO2 permeance (KCO2)
• The membrane selectivity (αCO2/N2)

• This general graph can be applied as a sensitivity study tool

Findings (cont’d)
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