

DE-FE-0029093: Heat Integration Optimization and Dynamic Modeling Investigation for Advancing the Coal Direct Chemical Looping Process

Dikai Xu

Andrew Tong (PI), L.-S. Fan (Co-PI) Department of Chemical and Biomolecular Engineering THE OHIO STATE UNIVERSITY NETL Project Review Meeting | August 15th, 2018

OSU Coal Direct Chemical Looping Process

	CDCL Plant
Coal Feed, kg/h	205,358
CO ₂ Capture Efficiency, %	96.5
Net Power Output, MW _e	550
Net Plant HHV Efficiency, %	35.6
Cost of Electricity, \$/MWh	102.67
Increase in Cost of Electricity, %	26.8

OSU Chemical Looping Evolution

OSU Coal Direct Chemical Looping Process

200-Hour Continuous Operation at 25kW_{th} Sub-pilot Scale

CDCL Development Pathway

Scale Up Plan

Modular Reactor Design

- Chemical looping inherent low capital cost technology
- Reduce risks for large scale-up

Commercial Offering

Time

The Ohio State University

Scale Up Plan

Challenge: Integrating with Dover Site

Commercial Offering

Time

Lab

Testing

Project Objective

Reduce risks in the CDCL technology development to enable scale-up and eventual commercialization

	Tecks/Milestones	BP1				BP2					BP3			
	I asks/milestones		2	3	4	1	2	3	4	1	2	3	4	
1	Project Management and Planning													
	Quarterly Reports													
	Final Report Preparation													
2	Chemical Looping Combustor Simulation													
2.1	Bench Unit Combustor Apparatus Setup													
2.2	Oxygen Kinetic Model Development and Verification													
2.3	Modeling Scheme Including Coupling of Hydrodynamics, Heat Transfer and Reaction													
2.4	Pilot and Commercial Scale Combustor Analysis													
	Milestone 2.1: Combustor Apparatus Ready for Operation		٠											
	Milestone 2.2: Oxygen Carrier Kinetic Model Developed				٠									
	Milestone 2.3: Modeling Scheme Coupling of Hydrodynamics, Heat Transfer and Reaction Developed								٠					
3	Heat Exchanger Network Integration and Optimization													
3.1	CDCL Static Model Development													
3.2	HEN Design with Steam Cycle													
3.3	HEN Optimization													
3.4	Heat Exchanger Sizing and CDCL 550 MWe Cost Analysis Update													
	Decision Point 1: Integrated CDCL Systems Analysis Model Developed					٠								
	Milestone 3.2: HEN Design Developed for Cost Analysis										٠			
4	Dynamic Modeling of Integrated CDCL-Steam Cycle System													
4.1	CDCL Process Model Development													
4.2	Steam Cycle Model Development													
4.3	Integrated System Model Development													
4.4	System Operation Simulation													
	Milestone 4.1: Dynamic Model for 10 MWe CDCL Reactor Developed			•										
	Milestone 4.2: Dynamic Model for 10 MWe Steam Cycle Developed							٠						
	Decision Point 2: Integrated Dynamic Model for 10 MWe CDCL Process DevelopedDecision Point 2: Integ	rated	d Dy	nam	ic M	lodel	for	10 N	1We	CDC	Ъ.	٠		

- 1. Enable Commercialization
- 2. Enable Scale-Up

Task 2: Combustor Simulation

- CDCL Combustor Model
 - USCM Kinetic Model
 - MFiX CFD Model
- Design and Analysis of 10MW_e Pilot and 550MW_e Commercial Plant
 - Lateral Transport & Mixing
 - Oxygen Carrier Conversion
 - Heat Transfer

Task 2: Combustor Simulation

URSM for Fully-reduced Particle URSM for Partially-reduced Particle

- USCM Kinetic Model
 - Extended model to consider partially-reduced particle
 - Used TGA experiments to determine rate constants
 - Model tested at different temperature and O₂ concentration

Task 2: Combustor Simulation

- USCM Kinetic Model
 - Extended model to consider partially-reduced particle
 - Used TGA experiments to determine rate constants
 - Model tested at different temperature and O2

1000°C, Partially-reduced Particle

Task 2 Hydrodynamic Modeling

- MFiX CFD Model of Combustor
 - Based on MFiX Two Fluid Model
 - Study the effect of reactor geometry and in-bed heat exchanger on combustor performance
 - Validation by cold flow model with heat exchanger tubes

Task 2 Hydrodynamic Modeling

- MFiX CFD Model of Combustor
 - Based on MFiX Two Fluid Model
 - Study the effect of reactor geometry and in-bed heat exchanger on combustor performance
 - Validation by cold flow model with heat exchanger tubes

Task 2 Hydrodynamic Modeling

- MFiX CFD Model of Combustor
 - Based on MFiX Two Fluid Model
 - Study the effect of reactor geometry and in-bed heat exchanger on combustor performance

 Validation by cold flow model with heat exchanger tubes

- CDCL Process Simulation in ASPEN Plus
 - 550 MW_e plant
 - In-bed heat exchanger
 - Industrial relevant constrains
- Integration with Steam-Cycle
 - Multiple heat exchanging surfaces
- HEN Optimization
- Cost Estimation

- CDCL Process Simulation
 - In-bed heat exchanger
 - Industrial relevant constrains
- Integration with Steam-Cycle
 - Multiple heat exchanging surfaces

Economizer

- HEN Optimization
- Cost Estimation

Convection Pass

The Ohio State University

- Simulation settings
 - Coal: Illinois #6
 - Steam cycle
 - Supercritical cycle
 - 24.1 MPa/593 °C/593 °C
 - Adapted based on prior studies from B&W
- Preliminary results of HHV efficiency
 - Baseline: 32.5%
 - CDCL process: 37.6%

	CDCL Preliminary Design
Total Gross Power, MW _e	643
Total Auxiliaries, MW _e	93
Net Power, MW _e	550
HHV Thermal Input, MW _t	1462
HHV Net Plant Efficiency (%)	37.6
As- Received Coal Feed, kg/hr	194,110

Task 4: Dynamic Modeling of Integrated Power Plant

- Dynamic Modeling in ProTRAX
- 10 MW_e CDCL pilot plant
 - Preliminary design from DE-FE0027654
- Existing 20 MW_e steam cycle at Dover, OH
 - Based on data obtained from Dover Light & Power
- Startup and operation simulation

Task 4: Dynamic Modeling of Integrated Power Plant

Task 4: Dynamic Modeling of Integrated Power Plant

- Dynamic Model for CDCL
 - Mass and Energy Balance
 - Hydrodynamic Correlation
 - Chemical Reactions
- Dynamic Model for Steam Cycle
 - Obtained steam cycle design and parameter from Dover Light & Power

Conclusion

- Combustor performance model will be developed in this project to support HEN integration and system dynamic studies
- HEN integration and optimization will be performed to enable the commercialization of the CDCL process
- Dynamic modeling will be performed to enable the scale-up of the CDCL process
- Kinetic model for oxygen carrier oxidation in CDCL combustor is developed to simulate the oxidation of fully- and partially- reduced oxygen carrier particles
- MFiX CFD model is being developed to study the effect of bed geometry and in-bed heat exchanger on fluidization properties of the combustor reactor
- ASPEN Plus model of 550 $\rm MW_e$ integrated CDCL-steam cycle plant is developed for HEN optimization
- ProTRAX dynamic model is being developed for 10 MW_e CDCL pilot plant at Dover

Thank You

Disclaimer

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.