Electrochemically-mediated Sorbent Regeneration in CO₂ Scrubbing Processes

NETL Pittsburgh, PA | August 26, 2019

Principal Investigator

Professor T. Alan Hatton tahatton@mit.edu

Submitted to

U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory **Award Name:** Electrochemically-Mediated Sorbent Regeneration in CO₂ Scrubbing Processes (FE0026489)

Funding:

DOE	\$1,202,052
□Cost Share	\$ 310,601
□Total	\$1,512,653

Project Period: August 1, 2017 – December 31, 2020

Project Pls: T. Alan Hatton, Howard Herzog DOE Project Manager: Ted McMahon, Bruce Lani, David Lang

Overall Project Objectives: Develop, characterize and implement electrochemically mediated sorbent regeneration and CO_2 release in amine scrubbing processes

Amine Regeneration in CO₂ Capture

Electrochemically Mediated Amine Regeneration

Electrochemically Mediated Amine Regeneration

Nernstian Description of Electrochemical Gas Separation Cycle

Nernstian Description of Electrochemical Gas Separation Cycle

Prior effort: EMAR CO₂ capture

EMAR Advantages and Challenges

Advantages:

- Does not need steam and extensive retrofitting
- Lower operation temperature
- Can desorb at pressure
- Can utilize low grade waste heat to improve efficiency

Challenges:

- Overpotentials intrinsic to electrochemical systems
- Efficiency losses due to ion migration
- Stable cyclic operation

Technical Approach

Evaluation of amine-metal pairs

- Thermodynamics
- Kinetics

Electrochemical characterization

- Evaluate supporting electrolyte
- Overpotentials required

Electrochemical cell modeling

Process modeling

- Energetics
- Techno-economic analysis

Bench scale demonstration

 Chronoamperometry on rotating disk electrode shows overpotential (η) for cathodic reaction

$$i_o = 2Fk_o [EDA]^{2\alpha} [Cu(EDA)_2^{(2+)}]^{(1-\alpha)}$$
$$i_o \sim \sqrt{2}(1-\eta)^{1/2}\eta^{3/4}$$

 Higher overpotential with increasing CO₂ content

0

0.2

0.4

$$\frac{i_o(EDA - CO_2)}{i_o(EDA)} \sim \left(\frac{P_o}{K_{CO_2}P_{CO_2}}\right)^{\alpha} \sim 0.3$$

RDE results imply asymmetrical electrode polarization

 Chronoamperometry on rotating disk electrode shows overpotential (η) for cathodic reaction

$$i_o = 2Fk_o [EDA]^{2\alpha} [Cu(EDA)_2^{(2+)}]^{(1-\alpha)}$$
$$i_o \sim \sqrt{2}(1-\eta)^{1/2}\eta^{3/4}$$

 Higher overpotential with increasing CO₂ content

$$\frac{i_o(EDA - CO_2)}{i_o(EDA)} \sim \left(\frac{P_o}{K_{CO_2}P_{CO_2}}\right)^{\alpha} \sim 0.3$$

Supporting salt affects kinetics

 Changing electrolyte can increase current density from <10 mA/cm² to >50mA/cm²

 Addition of Cl⁻ increases current density to 100 mA/cm²

EMAR Cell Construction

Continuous Bench Scale EMAR

Gas Separation and Electron Utilization: Effect of Flow Rate

Continuous Operation under Constant Current

Enhanced Electrode Stability with Recycle

200 hr with recycle

EMAR thermodynamics modeling

 , i				
Gas			+	_
$N_2(g)$ $CO_2(g)$	H ₂ O(g)	EDA(g)		$f_i = p_i$
Aqueous solution $O_2(aq)$	$H_2 O(aq)$	↓ EDA(aq)		
$0H^- + H^+ \leftrightarrow H_2 O$	NaHCO ₃ (aq	$) \leftrightarrow \mathrm{Na}^{+} + \mathrm{HCO}_{3}^{-}$		$a_i = \gamma_i c_i$
$OH^- + CO_2(aq) \leftrightarrow HCO_3^-$	$NaCO_3^- + H$	$^{+}\leftrightarrow$ Na $^{+}$ + HCO ₃ $^{-}$		
$\text{H}^+ + \text{CO}_3^{2-} \leftrightarrow \text{HCO}_3^-$	NaCl(aq	$) \leftrightarrow \mathrm{Na}^+ + \mathrm{Cl}^-$		
$CuO(aq) + 2H^+ \leftrightarrow Cu^{2+} + H_2O$	NaSO	$F \leftrightarrow \mathrm{Na}^+ + \mathrm{SO}_4^{2-}$		~
$CuOH^+ + H^+ \leftrightarrow Cu^{2+} + H_2O$	EDA(aq) + H	$^+ \leftrightarrow \text{EDAH}^+$		$\gamma_i \rightarrow B$ -dot equation
$CuCl \xrightarrow{+} Cu^{2+} + Cl \xrightarrow{-}$	$EDAH^+ + H$	$^+ \leftrightarrow \text{EDAH}_2^+$		Debye Hückel)
$CuCl_{2}(aq) \leftrightarrow Cu^{2+} + 2Cl^{-}$	$2EDA(aq) + Cu^2$	$^+ \leftrightarrow Cu(EDA)_2^{2+}$		
	$EDA(aq) + CO_2(aq)$	$) \leftrightarrow \text{EDACO}_2(\text{aq})$		

EMAR electrolyte speciation with copper electrodes and EDA as the amine

To calculate:

• Electrochemical Energetics

Wolery, (2002); Paoletti, Pure Appl Chem, 56, (1984): 491-522; Stern, PhD Thesis, (2013)

Process energetics (compressor, pump, hot water utilities, etc.)

Hatton Group, Int. J. Greenhouse Gas Control. 2019, 82, 48-58.

Electrochemical Energetics

$$W_{\min} = \frac{1}{F_{m,CO2}} \left(\int_{x_{Cu}} E_{ox} dI - \int_{x_{Cu}} E_{red} dI \right)$$

Electrochemical Energetics

$$W_{\min} = \frac{1}{F_{m,CO2}} \left(\int_{x_{Cu}} E_{ox} dI - \int_{x_{Cu}} E_{red} dI \right) \qquad \qquad W_{\min,corrected} = \frac{1}{F_{m,CO2}} \left(\int_{x_{Cu}} E_{ox} dI - \int_{x_{Cu}} E_{red} dI \right)$$

Electrochemical Energetics

28

Finite Electrode Overpotential: Segmented Electrodes

EMAR Work with Segmented Electrodes

Effect of Operating Parameters on Overall Energetics

Process Energetics comparison

[1] Econamine process, Case10, Rev.2a, NETL (2013)
[2] Rabensteiner et al., *Int J Greenh Gas Con*, 27 (2014), 1-14
[3] Lin and Rochelle, *Chem Eng J*, 283, (2016): 1033-1043

Cost of Electricity and CO₂ Avoided

34

Conclusion

EMAR is an alternative CO_2 desorption at low temperature (less amine degradation) and with electricity (easier retrofit)

Favorable energetics and costs relative to conventional thermal amine processes

Effective and stable approach for flue gas CO₂ capture

Technical Risks	Probability	Impact	Risk Mitigation
CO ₂ sorbents and metal ion systems unsuccessful	Medium	Low	Wide range of candidate sorbents available. Initial results are promising
Electrochemical cell models low in fidelity and do not permit optimization	Moderate	Low	Complexity of underlying mechanisms in electrochemical cell presents risk for modeling. Parametric experiments will generate sufficient data for empirical optimization.
Process found to be too sensitive for long-term operations and disturbances	Moderate	Moderate	Preliminary testing is encouraging. Degradation of electrodes or sorbents possible, but can be mitigated through design of electrode configurations

Resource Risks	Probability	Impact	Risk Mitigation
Cost of bench-scale system after optimization more expensive than planned	Low	Low	Most of the components of the system have been procured and operated in previous work, but the optimized system might involve more expensive equipment, especially for automation.

Management Risks	Probability	Impact	Risk Mitigation
Process performance reaches a plateau that does not satisfy DOE research goals	Moderate	High	The progress reports will allow the project team to evaluate the performance of the process and determine whether it is possible to explore new dimensions for performance improvements.

Acknowledgement

Mike Stern

Aly Eltayeb

Ryan Shaw

Miao Wang

