Electrochemically-mediated Sorbent Regeneration in CO₂ Scrubbing Processes

NETL Pittsburgh, PA | August 26, 2019

Principal Investigator

Professor T. Alan Hatton tahatton@mit.edu

Submitted to

U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory **Award Name:** Electrochemically-Mediated Sorbent Regeneration in CO₂ Scrubbing Processes (FE0026489**)**

Funding:

Project Period:August 1, 2017 – December 31, 2020

Project PIs: T. Alan Hatton, Howard Herzog **DOE Project Manager:** Ted McMahon, Bruce Lani, David Lang

Overall Project Objectives: Develop, characterize and implement electrochemically mediated sorbent regeneration and $CO₂$ release in amine scrubbing processes

Amine Regeneration in $CO₂$ Capture

Electrochemically Mediated Amine Regeneration

Electrochemically Mediated Amine Regeneration

Nernstian Description of Electrochemical Gas Separation Cycle

Nernstian Description of Electrochemical Gas Separation Cycle

Prior effort: EMAR $CO₂$ capture

EMAR Advantages and Challenges

Advantages:

- Does not need steam and extensive retrofitting
- Lower operation temperature
- Can desorb at pressure
- Can utilize low grade waste heat to improve efficiency

Challenges:

- Overpotentials intrinsic to electrochemical systems
- Efficiency losses due to ion migration
- Stable cyclic operation

Technical Approach

Evaluation of amine-metal pairs

- Thermodynamics
- **D** Kinetics

Electrochemical characterization

- Evaluate supporting electrolyte
- Overpotentials required

Electrochemical cell modeling

Process modeling

- Energetics
- D Techno-economic analysis

Bench scale demonstration

• Chronoamperometry on rotating disk electrode shows overpotential (η) for cathodic reaction

$$
i_o = 2Fk_o[EDA]^{2\alpha}[Cu(EDA)_2^{(2+)}]^{(1-\alpha)}
$$

$$
i_o \sim \sqrt{2}(1-\eta)^{1/2}\eta^{3/4}
$$

 0.2 -0.4 -0.2 0.4 0 η (V) Higher overpotential with increasing \bullet $CO₂$ content

 $-40%$

 -50%

 \cdot 100% CO₂

$$
\frac{i_o(EDA - CO_2)}{i_o(EDA)} \sim \left(\frac{P_o}{K_{CO_2}P_{CO_2}}\right)^{\alpha} \sim 0.3
$$

RDE results imply asymmetrical electrode polarization

• Chronoamperometry on rotating disk electrode shows overpotential (η) for cathodic reaction

$$
i_o = 2Fk_o[EDA]^{2\alpha}[Cu(EDA)_2^{(2+)}]^{(1-\alpha)}
$$

$$
i_o \sim \sqrt{2}(1-\eta)^{1/2}\eta^{3/4}
$$

• Higher overpotential with increasing $CO₂$ content

$$
\frac{i_o(EDA - CO_2)}{i_o(EDA)} \sim \left(\frac{P_o}{K_{CO_2}P_{CO_2}}\right)^{\alpha} \sim 0.3
$$

Supporting salt affects kinetics

• Changing electrolyte can increase current density from <10 mA/cm2 to >50mA/cm2

Addition of CI increases current density to 100 mA/cm2

EMAR Cell Construction

Continuous Bench Scale EMAR

Gas Separation and Electron Utilization: Effect of Flow Rate

Continuous Operation under Constant Current

Enhanced Electrode Stability with Recycle

EMAR thermodynamics modeling

EMAR electrolyte speciation with copper electrodes and EDA as the amine

To calculate:

• Electrochemical Energetics

Wolery, (2002); Paoletti, *Pure Appl Chem*, 56, (1984): 491-522; Stern, *PhD Thesis,* (2013)

• Process energetics (compressor, pump, hot water utilities, etc.) Hatton Group, *Int. J. Greenhouse Gas Control.* ²⁰¹⁹**,** *⁸²*, 48-58.

Electrochemical Energetics

Electrochemical Energetics

$$
W_{\min} = \frac{1}{F_{\text{m,CO2}}} \left(\int_{x_{\text{Cu}}} E_{\text{ox}} \text{d}I - \int_{x_{\text{Cu}}} E_{\text{red}} \text{d}I \right) \qquad W_{\min, \text{corrected}} = \frac{1}{F_{\text{m,CO2}}} \left(\int_{x_{\text{Cu}}} E_{\text{ox}} \text{d}I - \int_{x_{\text{Cu}}} E_{\text{red}} \text{d}I \right)
$$

Electrochemical Energetics

 $x_{\rm Cu}$

 $x_{\rm Cu}$

24

 x_{C_1}

 $x_{\rm Cu}$

Finite Electrode Overpotential: Segmented Electrodes

EMAR Work with Segmented Electrodes

Effect of Operating Parameters on Overall Energetics

Process Energetics comparison

[1] Econamine process, Case10, Rev.2a, NETL (2013) [2] Rabensteiner et al., *Int J Greenh Gas Con,* 27 (2014), 1-14 [3] Lin and Rochelle, *Chem Eng J*, 283, (2016): 1033-1043

Cost of Electricity and $CO₂$ Avoided

Conclusion

EMAR is an alternative $CO₂$ desorption at low temperature (less amine degradation) and with electricity (easier retrofit)

Favorable energetics and costs relative to conventional thermal amine processes

Effective and stable approach for flue gas $CO₂$ capture

Acknowledgement

Mike Stern Aly Eltayeb Ryan Shaw Miao Wang Subrahmaniam Hariharan

