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prospective CO, storage in the subsurface for the Carbon Storage Atlas, the NETLs Regional
Carbon Sequestration Partnership (RCSP), and CARBONSAFE projects. Carbon storage resource S
estimation in subsurface formations plays a key role in establishing the scale of CCS activities for 4 _ BV CARBON.SEQUESTRATION CDCarbrm Seguestration Sequestration PaftﬂefShiD (RCSP) | riSC (CabenSAFE)
governmental policy and commercial project decision-making. DOE’s Carbon Storage Atlas has NN by, o, TR ; _ 'l = D) e = = 4 . S <
quantified CO, storage potential for oil and natural gas reservoirs (186-232 GT), unmineable coal ' ' u— | Snla ¢ ,%Canada
seams (54-113 GT), and saline formations (2,379-21,633 GT). DOE has identified hydrocarbon-
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bearing shale basins and residual oil zones as other geologic storage options. Currently, high- of the United State

level assessments of CO, storage potential specific to hydrocarbon-bearing shale basins and @ %‘\\ ' i

residual oil zones at the regional and national scale are unavailable. This poster will focus on RGN O MRCSP{ : ‘ 5
methods and tools developed to assess CO, storage in shale systems and residual oil zones. For CIMGSC s BURY

storage in shale systems, numerical simulations were conducted using the FRACGEN/NFFLOW = =

simulator to study the CO, injection into a depleted hydro-fractured shale reservoir and
estimate storage efficiencies using a range of reservoir parameters and injection scenarios. The
ranges for two efficiency factors, E4 and Eg, measure the effectiveness of CO, stored as free and
adsorbed phases, respectively. These efficiency factors were estimated to have P,, to Pq,
probability ranges of 0.15 to 0.36 for E4 and 0.11 to 0.24 for Eg, reported after 60 years of CO,
injection. For residual oil zone systems, we highlight the approach in terms of proposed
equations and identify challenges and data gaps for estimating CO, storage.
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BSCSP: Big Sky Carbon Sequestration Partnership
MGSC: Midwest Geological Sequestration Consortium
MRCSP: Midwest Regional Carbon Sequestration Partnership
PCOR: The Plains CO, Reduction Partnership
SECARB: Southeast Regional Carbon Sequestration Partnership
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Ranges of EyandEs Efficiency Factor Terms for Carbon Dioxide Storage in (MEIZer ConSUItlng),
0351 Shales Calculated Using Method I and Method II (values in the parentheses). — =
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0.15] 5 0.04 (0.17) 0.12 (0.56) 0.04 (0.25) 0.12 (0.53) D £Co q K / 3
10 0.06 (0.22) 0.18 (0.59) 0.07 (0.31) 0.18 (0.57) — ensity o at reservoir conditions m
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Fraction of formation area available for CO, storage 005l 30 0.10 (0.28) 0.28 (0.60) 0.1 (0.36) 0.27 (0.58) - r - _ - _ Solubility of CO, in brine mass /mass
. . . . 40 0.11 (0.28) 0.31 (0.59) 0.13 (0.37) 0.30 (0.56) Y . . . . v . . - . .
Fraction of formation thickness available for CO, storage 0.00 s s : . - s 50 0.14 (0.27) 0.34 (0.58) 0.14 (0.34) 0.33 (0.55) free phase dissolved in brine dissolved in oil Solubility of CO, in oil mass/mass
- - == - - - 0.25 60 0.15 (0.26) 0.37 (0.57) 0.15 (0.34) 0.36 (0.54) . . . . . .
Fraction of shale porosity within the net effective volume of the formation, V,, available for CO, storage. : Efficiency factor for dissolution in brine —
This is a reservoir scale efficiency factor that is mean’F ’Fo addres‘s the p.robablllty that CO, will never reach. 0.20} Es Efficiency factor for dissolution in oil —
:zl:\rsezft;cinfyPore space due to transport heterogeneities associated with fracture networks and low matrix < Vears Minimuen Maximum Pig Pog Efficiency factor for CO, utilization _
. . 5 0.02 (0.09) 0.07 (0.36) 0.03 (0.14) 0.07 (0.34)
Fraction of the total potential sorbed volume of CO, within the net effective volume of the formation, V,, 0.10} 10 0.04 (0.13) 0.11 (0.48) 0.05 (0.16) 0.11 (0.44)
(EmEsorp). This is a reservoir scale efficiency factor that is meant to address both transport and sorption 20 0.06 (0.16) 0.17 (0.57) 0.07 (0.20) 0.17 (0.53)
. . . 0.05} 30 0.08 (0.15) 0.21 (0.59) 0.09 (0.20) 0.20 (0.56)
inefficiencies. 40 0.09 (0.15) 0.25 (0.58) 0.10 (0.21) 0.22 (0.57)
Fraction of the shale matrix within the effective volume of the formation, V,, available for CO, storage. This 0.00 : - 1 L - L S0 0.10 (0.15) 0.26 (0.57) 0.11 (0.20) 0.23 (0.56)
) 0 10 20 30 40 50 60 60 0.11 (0.14) 0.27 (0.55) 0.11 (0.19) 0.24 (0.55)
is a reservoir scale efficiency factor that is meant to address the probability that CO, will never reach some years
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