=8 ¥ OAK RIDGE

National Laboratory

Digital Twins and Reinforcement
Learning for Carbon Footprint
Minimization of Data Centers

Wesley Brewer, Ph.D.

Senior Research Scientist
National Center for Computational Sciences

S ]
il
il 1!
/
U.S. DEPARTMENT OF

ENERGY ORNL IS MANAGED BY UT-BATTELLELLC
FOR THE US DEPARTMENT OF ENERGY




Digital Twin / Carbon
Optimization
Architecture

A digital twin is a set of virtual
information constructs that

mimics the structure, context, and
behavior of an individual/unique
physical asset,

is dynamically updated with data
from its physical twin throughout its
lifecycle, and

informs decisions that realize value.
AIAA Digital Engineering Integration Committee (2020)
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Grid Energy Mix Information
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Workloads

Power profile landscape of workloads
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EXADIGIT power Model

Dynamically predicts total system power, energy conversion losses.
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System Power
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Karimi et al. (2024)

— Marurod Pawer (SCADA)
— Prockcted Pomer (RAPS)
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ExaDigiT can be used to create a virtual datacenter

Augmented Reality - ‘ | Console Interface
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Dashboard interface
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System-level insights

DAILY STATISTICS OF DT FROM TELEMETRY REPLAY OF 183 DAYS.

Parameter Min Avg Max Std

Avg Arrival Rate, t4v4(S) 17 138 2988 331

Avg Nodes per Job 39 268 5441 626

Avg Runtime (m) 17 39 101 14

Jobs Completed 32 1575 5157 1171

Throughput (jobs/hr) 1.3 66 215 49

Avg Power (MW) 10.2 é 230 24

Loss (MW) 0.52 C_1.14 H(1.84 ) 0.15 Peak-power breakdown
Loss (%) 6.26 g4 8. 0.11 P

Total Energy Consumed (MW-hr) 129 405 553 64 ~ . |
Carbon Emissions (tons CO5) 53 168 229 26 STM per year in losses!

Considerable losses are incurred during both AC-DC
rectification and DC-DC voltage conversion.

Exploring energy-efficient solutions

“Smart-load-sharing”  Unnecessary rectifiers can be put in standby mode when compute nodes are idle, leading to
rectifiers $120k per year savings for Frontier
DC-direct power Providing 380V DC-direct power increased the system efficiency from 93.3% to 97.3%, a potential
savings of $542k per year.
¥ QAKRIDGE WP EXADIGIT



Carbon Footprint Optimization via Reinforcement Learning (RL)

Storage Savings

Grid
Carbon
Intensity

Internal and External Dependencies for the
Cooling, Load Shifting, and Battery Agents

Single-agent RL on HVAC setpoint

control yields a 7% reduction in CO, _Multi-Agent

vs. ASHRAE G36 baseline; multi-
agent RL yields a 13% reduction.
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Actions

RL seeks to learn a policy which
maps states to actions:

a = T7(s)

Cooling

Load Shift

Energy Storage

Reinforcement
Learning

@ Hewlett Packard
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Data Center Green Dashboard - Simulated Digital Twin

New York -

Energy Consumption
@ 6.16 vs 6.74 MWh
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Actions
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Carbon Emissions
31.10vs 34.08 kTCO2e
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HVAC Setpoint (°C)
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NP |

Liquid cooling offers
significantly higher cooling
capacity per unit volume and
can reduce cooling energy

©0penar Gym
Digital Twin of
Data Center
Environment |

63%.

|

Multi-Agent Reinforcement Learning Controller

Sarkar et al. (2024)

and carbon footprint by up to

i Khalaj and Halgamuge (2017)
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