Ignition, turbulent flame speeds, and emissions from high hydrogen blended fuels

PI: Wenting Sun

Co-PI: Tim Lieuwen, Vishal Acharya and Devesh Ranjan

School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332

Performance period: Sept. 2021 – Sept. 2025

UTSR Project: DE-FE0032079 PM: Mark Freeman

UTSR Workshop

Background and Motivation

- Improve understanding of fundamental phenomena of hydrogen containing fuels for gas turbines.
- Pure hydrogen (H₂), carbon free hydrogen carrying fuels (such as ammonia, NH₃), mixtures of them and with natural gas
- Lots of data on autoignition delays and flame speeds exist, what is new?
 - Inconsistent trends on experimental data
 - Not much data at practical conditions (e.g., most data are in highly diluted environments)
 - Performance of existing kinetic models diverges significantly

Task 2: Investigation of Autoignition of Ammonia/Hydrogen

- Existing data are mostly in highly diluted environments
- Fuels: pure NH_3 and NH_3/H_2 mixture
- Temperature range: 1100 K to 2200 K
- Equivalence ratio: 0.5, 1 and 2
- Pressure: ~10-20 atm
- Facility: high pressure shock tube

Schematic of experimental setup at the measurement section

stoichiometric $NH_3/O_2/Ar$ mixture with 22% fuel at 12.8 atm and 1180 K.

IDTs of NH₃

- There exists fuel concentration effect
- No model can reproduce experiments well at all conditions

IDTs of NH_3/H_2

- NH_3/H_2 mixture to improve flame stabilization
- Rich NH_3 flame produce very significant amount of H_2
- Carefully selected experimental conditions
 - Ovoid premature ignition events for H_2

IDTs of NH_3/H_2

- Results & observations
- Good agreement with Glarborg (2022) at 20% and 50% hydrogen in fuel
- Can't fine one model fits all

NH₃ Sensor & Speciation

- NH₃ absorption feature consisting of three closely spaced R-branch transitions in the $\nu_2 + \nu_3$ combination band near 2.2 μ m
 - adequate line strengths, relatively weak temperature dependence, and good spectral isolation from other possible interfering species commonly found at high-temperature combustion conditions, such as H_2O and CO.
- Thoroughly characterized (manuscript under review)
 - Collisional broadening coefficients dependence on pressure & temperature

2D Imaging of Shock Tube

Preliminary Results

Highs-speed images for hydrogen mixture from end-wall P=5.8 atm, T=1044 K Measured 808 μ vs Computation 877 μ Highs-speed images for hydrogen mixture from sidewall P=6.2 atm, T=1087 K
Measured 250/200 μ (P&OH) vs Computation 340/280 μ (FFCM/NUIGMech 1.1)

Mechanism Optimization : Reaction Pathway Analysis

- Low fuel
 - NH_2 -NH- $N-N_2$
 - HNO-NO-N₂O-NNH-N₂
- High fuel
 - HNO-NO-N₂O-NNH-N₂ less important

• Additional path through N_2H_3 - N_2H_2 -NNH- N_2

Mechanism Optimization : Reaction Pathway Analysis

	Mathieu model	Mevel model
Promote ignition at high fuel	$\rm NH_2 + \rm NO \rightarrow \rm NNH + OH$	$NH_2 + O_2 \rightarrow HNO + OH$ N_2H_3 and N_2H_2 decomposition
Promote ignition at low fuel	$NH + O_2 \rightarrow HNO + O$ $NH_2 + NO \rightarrow NNH + OH$	$NH_3 + NH_2 \rightarrow N_2H_3 + H_2$ N_2H_3 and N_2H_2 decomposition
Inhibit ignition at high fuel	$\begin{split} H_2 NO + NH_2 &\rightarrow HNO + NH_3 \\ NH_2 + NO &\rightarrow N_2 + H_2O \\ NH_2 + O_2 &\rightarrow NO + OH \end{split}$	$2NH_2 \rightarrow NH_3 + NH$ $NH_3 + H \rightarrow NH_2 + H_2$
Inhibit ignition at low fuel	$NH_2 + NO \rightarrow N_2 + H_2O$ $NH + O_2 \rightarrow NO + OH$	$\begin{split} NH_3 + H &\rightarrow NH_2 + H_2 \\ NH_2 + H &\rightarrow NH + H_2 \\ N_2H_3 \text{ and } N_2H_2 \text{ quench } NH_2 \end{split} \qquad 11 \end{split}$

Mechanism Optimization

- Important reactions vary among models
- Argument on the existence of N_2H_X
- Sensitivity analysis & reaction pathway analysis

Stoichiometric NH₃ mixtures with a) 1% NH₃, b) 7% NH₃, c) 15% NH₃, and d) 22% NH₃

Conclusions from Ignition Study

- NH₃ IDTs have fuel concentration dependency; NH₃/H₂ mixture shows similar dependency on mixing ratio; no model can predict such dependencies well.
- NH₃ sensor was developed and characterized to probe pyrolysis and oxidation kinetics.
- Shock tube imaging capability was developed to examine ignition uniformity and flame speed measurement.
- Kinetic model optimization was explored.

Thank you & Questions?

Benchmark of shock tube IDT measurement

• Repeat experiments reported in literature and compare with simulations

Pressure Traces during IDT Measurement

• Clean Pressure traces, no sign of inhomogeneous ignitions

Signals at the measurement section from a typical experiment in this study, for a stoichiometric $NH_3/O_2/Ar$ mixture with 22% fuel concentration at 12.8 atm and 1180 K. OH* emission and NH_3 absorbance signals are of arbitrary units.

Pressure signals near the measurement section from a typical experiment in this study, for a stoichiometric $NH_3/O_2/Ar$ mixture with 22% fuel concentration at 12.8 atm and 1180 K