Ignition, turbulent flame speeds, and emissions from high hydrogen blended fuels

PI: Wenting Sun

Co-PI: Tim Lieuwen, Vishal Acharya and Devesh Ranjan

School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332

Performance period: Sept. 2021 – Sept. 2025

UTSR Project: DE-FE0032079 PM: Mark Freeman

1

UTSR Workshop

Background and Motivation

- Improve understanding of fundamental phenomena of hydrogen containing fuels for gas turbines.
- Pure hydrogen (H_2) , carbon free hydrogen carrying fuels (such as ammonia, $NH₃$), mixtures of them and with natural gas
- Lots of data on autoignition delays and flame speeds exist, what is new?
	- Inconsistent trends on experimental data
	- Not much data at practical conditions (e.g., most data are in highly diluted environments)
	- Performance of existing kinetic models diverges significantly

Task 2: Investigation of Autoignition of Ammonia/Hydrogen

- Existing data are mostly in highly diluted environments
- Fuels: pure $NH₃$ and NH_{3}/H_{2} mixture
- Temperature range: 1100 K to 2200 K
- Equivalence ratio: 0.5, 1 and 2
- Pressure: \sim 10-20 atm
- Facility: high pressure shock tube

Schematic of experimental setup at the measurement section

stoichiometric NH₃/O₂/Ar mixture with 22% fuel at 12.8 atm and 1180 K.

IDTs of $NH₃$

- There exists fuel concentration effect
- No model can reproduce experiments well at all conditions

O. Mathieu, E.L. Petersen, *Combust. Flame* 162 (2015) 554-570. R. Mevel, S. Javoy, F. Lafosse, N. Chaumeix, G. Dupre, C.E. Paillard, *Proc. Combust. Inst.* 32 (2009) 359-366. A.A. Konnov, J. De Ruyck, *Combust. Sci. Technol.* 168 (2001) 1-46.

IDTs of $NH₃/H₂$

- $NH₃/H₂$ mixture to improve flame stabilization
- Rich NH₃ flame produce very significant amount of H_2
- Carefully selected experimental conditions
	- Ovoid premature ignition events for H_2

IDTs of $NH₃/H₂$

- Results & observations
- Good agreement with Glarborg (2022) at 20% and 50% hydrogen in fuel
- Can't fine one model fits all

NH₃ Sensor & Speciation

- NH₃ absorption feature consisting of three closely spaced R-branch transitions in the v_2+v_3 combination band near 2.2 μ m
	- adequate line strengths, relatively weak temperature dependence, and good spectral isolation from other possible interfering species commonly found at high-temperature combustion conditions, such as H_2O and CO.
- Thoroughly characterized (manuscript under review)
	- Collisional broadening coefficients dependence on pressure & temperature

7

2D Imaging of Shock Tube

Preliminary Results

Highs-speed images for hydrogen mixture from end-wall P=5.8 atm, T=1044 K Measured 808 *µ vs* Computation 877 *µ*

Highs-speed images for hydrogen mixture from sidewall P=6.2 atm, T=1087 K Measured 250/200 *µ* (P&OH) *vs* Computation 340/280 *µ* (FFCM/NUIGMech 1.1)

Mechanism Optimization : Reaction Pathway Analysis

- Low fuel
	- $NH_2-NH-N-N_2$
	- HNO-NO-N₂O-NNH-N₂
- High fuel
	- HNO-NO-N₂O-NNH-N₂ less important

• Additional path through N_2H_3 - $N_2H_2-NNH-N_2$

Mechanism Optimization : Reaction Pathway Analysis

Mechanism Optimization

- Important reactions vary among models
- Argument on the existence of N_2H_X
- Sensitivity analysis & reaction pathway analysis

Stoichiometric NH_3 mixtures with a) 1% NH_3 , b) 7% NH₃, c) 15% NH₃, and d) 22% NH₃

Conclusions from Ignition Study

- $NH₃$ IDTs have fuel concentration dependency; $NH₃/H₂$ mixture shows similar dependency on mixing ratio; no model can predict such dependencies well.
- NH₃ sensor was developed and characterized to probe pyrolysis and oxidation kinetics.
- Shock tube imaging capability was developed to examine ignition uniformity and flame speed measurement.
- Kinetic model optimization was explored.

Thank you & Questions?

Benchmark of shock tube IDT measurement

• Repeat experiments reported in literature and compare with simulations

Pressure Traces during IDT Measurement

• Clean Pressure traces, no sign of inhomogeneous ignitions

Signals at the measurement section from a typical experiment in this study, for a stoichiometric $NH₃/O₂/Ar$ mixture with 22% fuel concentration at 12.8 atm and 1180 K. OH* emission and NH₃ absorbance signals are of arbitrary units.

Pressure signals near the measurement section from a typical experiment in this study, for a stoichiometric $NH₃/O₂/Ar$ mixture with 22% fuel concentration at 12.8 atm and 1180 K