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Motivational Factors and Background

• Issues with hydrogen gas turbine systems 

• Potential of low swirl flames with hydrogen-enriched systems

Experimental Apparatuses

• High-repetition rate ns-pulse laser system

• An optically accessible laboratory-scaled, swirl-stabilized burner

Results and Discussions

• Characterization of low swirl-stabilized flame

• Flashback characterization in low swirl burner

• Effects of fuel composition and varying swirler geometries

• Jet-in-Cross-Flow experiments.

Summary and Ongoing Work 

• Jet-in-cross-flow experiments, computational fluid dynamics (CFD) modeling.

Presentation Outline
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Hydrogen – a clean and sustainable energy source

• Significantly different combustion characteristics 
compared to natural gas – higher flame speed and 
adiabatic temperature

• Supports net zero carbon policy, however, NOx

emissions pose a problem with non-premixed systems

• Ultra-lean premixed hydrogen combustion has a 
great NOx reduction potential

Introduction 
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Source: GE Gas Power

• Higher flame speed increases the risk of flashback 

and equipment damage



• Swirl-stabilized flames are well-known methods to stabilize premixed flames

• Low swirl burners (LSBs) have gained increasing attention

• Increases flame intensity reduces the flame length

• LSBs have non-swirling core surrounded by a swirling shroud and produce freely propagating 
lifted flames

• OH-PLIF diagnostic technique – a well-known laser diagnostic tool to gain insight into flashback 
phenomena

Introduction
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[1] Cheng, C&F (1995)
[2] Huang et al., Prog. Energy & Comb. Sci. (2009)
[3] Johnson et al., PROCI (2005)

Objective of the current study:

Characterize the flashback process observed in a swirl-

stabilized, atmospheric-pressure burner with hydrogen-

enriched flames.

• Develop correlations

• Validate CFD models

• Study reported two peak values of turbulence intensities 

showing presence of inner and outer shear layer and 

credited its role for the flame flashback 1

LSI



Laser system 
• Pump laser: A ns-duration Nd:YVO4 laser 

(INNOSLAB, Model: IS400-2-L), P ~ 75 W 
@ 20 kHz-repetition rate emitting a 
unique 3 mm × 8 mm rectangular beam

• Dye laser: Frequency-tunable dye laser 
(Sirah, Model: CREDO-DYE-N) filled with 
a solution of rhodamine-6G dye diluted 
in pure ethanol

• Excitation wavelength: 283.9 nm, 
E ~ 0.05 mJ/pulse  

Imaging system
• Camera: A high-speed CMOS camera 

(Photron, Model: FASTCAM SA-Z)

• Intensifier: A high-speed intensifier 
(Invisible Vision, Model: UVi 1850-10 S25)

• UV lens (Cerco, Objectif UV, f/1.8)

• Filter

Experimental Apparatuses – Laser and Imaging 
System 
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Burner configuration
• A 21.2-mm ID low swirl burner with optically 

accessible pre-mixer system

• Fuel (H2 and CH4) with 50%90% H2 by mole

• Thermocouple (inserted in pre-mixer unit) 
senses the rise in temperature and shuts off 
fuel

Experimental Apparatuses – Burner System 
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Swirler design
• Swirling vane angles (α) – 26o and 33o.
• Perforated plate hole diameters – 1.08, 1.12 and 1.16 mm.

• Blockage ratio (BR) – 0.783, 0.767, and 0.75.

• Radius ratio – 0.65.



Characterization of Low Swirl Burner Flame – Variation of Fuel Compositions

Results and Discussion: Stable Flames
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Effects of Hydrogen Content (X𝐻2)

• Increasing X𝐻2tends to decrease lift-off length and 
increase the chances of flashback – due to a increase 
in flame speed

• Expected rise of flame temperature as hydrogen flame 
is hotter than methane flame at same ϕ

Effects of Pre-mixer Velocities (V)

• Velocity varied: 5.5 ≤ V ≤ 10 m/s 

• Lift-off length (L) tends to increase 
linearly with Velocity

• The local gas velocity is increased 
compared to flame speed and 
becomes less flashback prone

70%H2/30%CH4, 𝛟 = 0.4

f=0.4
P=1 atm
T=300 K

Cantera CalculationsV= 7.5 m/s and 𝝓 = 0.4



• Increasing ϕ decreases L, i.e., it brings 
the flame closer to the burner surface, 
increasing the risk of flashback

• Increasing ϕ increases flame speed

• Lifted-to-attached flame transition 
can be observed

• OH-PLIF signal increases with 
increasing  ϕ

Effects of Equivalence Ratio ϕ on Stable Flames
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ϕ= 0.4

ϕ= 0.55

70%H2/30%CH4-air flame, V = 7.5 m/s



Experimental test conditions: 5 ≤ V ≤ 10 m/s and 50% ≤ XH2
≤ 90%

• At low ϕ or H2, the flame is lifted and has V shape.
• Increasing ϕ or H2 pulls the flame closer to the tube exit;

however, the general shape remains unchanged.
• Significant change in flame shape occurs at ϕ = 0.65 or H2 = 75%.
• High-speed OH-PLIF images show intermittent burning in the

outer shear layer.

Investigation of Flame Flashback Events
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Flashback Characterization in Low Swirl Burner

Changes in flame shape and stabilization pattern as a function of ϕ or H2 at V = 10 m/s

XH2
=70%

ϕ= 0.60

increasing ϕ



Investigation of Flame Flashback Events
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70%H2/30%CH4-air flame, 𝐕 = 7.5 m/s

1 kHz frame rate (100 msec video)



Investigation of Flame Flashback Events
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70%H2/30%CH4-air flame, 𝐕 = 10 m/s

Flashback initiation 

• Burning of outer shear layer pulls the flame upstream into the nozzle.

Flashback propagation inside the nozzle

• Inner shear layer above the center channel wall (between swirled and unswirled flows) 
facilitates upstream flame propagation inside the nozzle.

Post-flashback flame holding

• Once a part of flame is attached to the rim of the swirler, it ignites the incoming fresh 
mixture (likely along the inner shear layer) forming a conical flame

• The flame structures anchor inside the mixing tube between the swirling and non-swirling 
regions.



• As XH2 increases, the burner system is more 
prone to flashback

• ϕFB decreases linearly with an increase in XH2

in the reactant mixture

Effects of Fuel Composition
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• As V increases, the flashback resistance of the 
burner system increases

• ϕFB increases linearly with an increase in pre-mixer 
velocity

The error bar 

represents a 2-sigma 

standard deviation of 
ϕFB obtained from six 

different experimental 

tests



Effects of Varying Swirler Geometries
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• Another interesting observation is on the 
slope of the flashback lines which shows a 
greater negative slope with increasing ‘d’

• The error bar represents a 2-sigma standard 
deviation of ϕFB obtained from five different 
experimental tests

• Dependence of ϕFB on XH2
for three different 

perforated plated hole diameters (d) keeping ′α′
fixed at 33°. 

• An increase in ‘d’ decreases the blockage ratio 
which increases the flow via the center-body and 
the burner system becomes less flashback prone.



• Dependence of ϕFB on XH2
for two different swirler vane angles keeping perforated 

plate hole diameter (d) fixed at 1.16 mm. 

• ϕFB increases with an increase in α especially at lower pre-mixer velocities of 5 and 
7.5 m/s.

• Higher α may be increasing the core flow.  

Effects of Varying Geometry
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• ϕFB lines almost overlap for two αs at V = 10 m/s



Jet in Cross Flow Experiments
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• Objective - Characterize flashback and flame-
holding with a jet-in-cross-flow fuel injection 
strategy. Validate CFD codes.

• JICF used in conventional swirlers as well as 
micro-mixers for fuel injection.

• Swirler removed and flat plate installed on back 
side.

• 0.063” fuel jet located in flat plate.

• Lean flame attached to burner tube exit.

• Ramp up equivalence ratio while maintaining 
H2/CH4 ratio and air flow.

ϕ = 0.55



Jet in Cross Flow Experiments
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1 kHz; OH-PLIF
Clamp

1 kHz; OH* CL

70%H2/30%CH4-air flame; ϕFB =0.665; at V = 4 m/s



• As momentum flux ratio increases, the flame detaches from the fuel port completely and 
stabilizes in the form of a lifted flame.   

• As r increases, the fuel jets penetrate further into the crossflow and the combustion zone 
shifts away from the fuel ports.

Time-Averaged OH PLIF Images After Flashback

Jet in Cross Flow Experiments
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V = 3 m/s, ϕFB =0.5

r = 4.42  

V = 3.5 m/s , ϕFB =0.68 V = 4 m/s, ϕFB =0.665

r = 7.83

V = 5 m/s , ϕFB = 0.73

70%H2/30%CH4-air flame at different pre-mixer velocities

V = 2 m/s, ϕFB = 0.4

Momentum flux ratio, r = 2.83

Increasing Flowrates



• Fluent Large Eddy Simulation.

• 9M cells (0.2 mm).

• Skeletal methane-air mechanism (16 species, 45 reaction).

• No turbulence chemistry interaction.

• BCD for momentum, SOU for scalars, 2nd ddt implicit PB solver.

• Chemiluminescence sub-mechanism from Petersen.

Jet in Cross Flow Modeling
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H+O+M=OH*+M                3.1E+14 0.0 10000.

OH*+H2O=>OH+H2O 5.92e12 0.5 -861.

OH*+H2=>OH+H2 2.95e12 0.5 -444.   

OH*+O2=>OH+O2 2.1e12 0.5 -482.

OH*+OH=>OH+OH 1.5e12 0.5 0.0

OH*+H=>OH+H 1.5e12 0.5 0.0

OH*+O=>OH+O 1.5e12 0.5 0.0

OH*+N2=>OH+N2 1.08e11 0.5 -1238.

OH*=>OH 1.4e6 0.0 0.0

!chemiluminescent reactions

!J. Hall, E. Petersen, Int. J. Chem. Kin. 38 (2006) 714–724.

!



• Simulations at highest 
flowrate shows fuel jet 
impingement on opposing 
wall and “horseshoe” 
shaped flame.

• Limits effectiveness of using 
planar techniques.

• Integrated line-of-sight 
chemiluminescence more 
useful.

Comparison to Fluent Simulations

Jet in Cross Flow Experiments
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Mean Chemiluminescence

(line-of-sight integrated)

Mean OH slice

Mean OH* slices

Mean OH slices
V = 5 m/s , H = 70%, ϕFB = 0.73



• CFD results qualitatively 
similar.

• Testing sensitivity to air 
inflow boundary conditions.

• Testing PaSR combustion 
model.

Comparison to Fluent Simulations

Jet in Cross Flow Experiments
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Mean Chemiluminescence

(line-of-sight integrated) V = 5 m/s , H = 70%, ϕFB = 0.73

V = 3 m/s, H = 70%, ϕFB = 0.5



• OH-PLIF fluorescence provides an excellent marker of the lift-off length and can capture 
transient phenomenon.

• Flashback occurs at high ϕ or XH2 when burning occurs in the outer shear layer and the 
leading flame brush ingresses into the pre-mixer tube. 

• Post-flashback flame is anchored on the rim of center-body between the swirling and 
non-swirling regions with conical flame front. 

• Additional work includes CFD model validation at experimental conditions.

• JICF experiments and CFD modeling continuing.

Summary and Ongoing Work
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