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sCO2 Field Work Proposal (FWP) Task 2

• Background

• Cooling model for direct supercritical carbon 

dioxide (sCO2) turbines

• Performance of thermal barrier coating in 

flowing sCO2

Turbines Multi-Year Research Plan (MYRP) Goal 4

• Background

• Design of additively manufactured (AM) 

cascade airfoils

• Test of AM cascade airfoils

Summary/Conclusions

Outline
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Objective 

• Advance understanding of sCO2 heat transfer for net-zero power 

cycles

• Design and test novel concepts for cycle and turbomachinery 
components

sCO2 FWP Heat Transfer (Task 2)
Background

Benefits

• Increased efficiency

• Up to 3% pt increase (Uysal et al., 2022)*

• Reduced sequestration requirements (fossil fuel systems)

• Decreased payback period

* Optimal sourcing of coolant contributes to performance improvement

Coolant stream

Uysal et al., 2022

Single Flow Turbine (SF)

4B and 6B: Two high-temperature recuperator (HTR) streams

5B: One HTR stream and one inlet HTR stream
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sCO2 FWP Heat Transfer 
Direct sCO2 Cooling Model

Searle et al., 2024 (all figures)
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• Screened internal cooling (𝑁𝑢/𝑁𝑢0 up to 10), thermal barrier coating (up to 150 µm), 
and film cooling ( up to   = 0.2)

• Advanced internal cooling (𝑁𝑢/𝑁𝑢0= 5) results in a 31% increase in 𝜙
• Applying a durable thermal barrier coating (100 µm yttria-stabilized zirconia(YSZ)) yields 

an 83% increase
• Current research should advance thermal barrier coating and internal heat transfer 

enhancement
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• Measure thermal barrier coating (TBC) resistance in-situ

• Use Wilson plot technique

• Explore performance of “as received” and aged TBC

Thermal Barrier Coating Test

sCO2 Turbine Cooling

Figure not to scale.

143 °C, 207 Bar

Re = 1.3×105

Internal rib 
features

Test 

Articles
Description

1 No TBC

2 “As received” TBC

3 Aged TBC

𝑅𝑇𝐵𝐶

Orbital 
Weld

TBCTransition

96 °C, 207 Bar

Re = 0.5 × 105 

to 2.5 × 105 

𝑅ℎ

𝑅𝑇𝐵𝐶

𝑅𝑚𝑒 𝑎𝑙

𝑅 
Intercept = 𝑅ℎ + 𝑅𝑇𝐵𝐶 + 𝑅𝑚𝑒 𝑎𝑙
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Turbines MYRP Small Turbines (Goal 4)
Background

Objective 

Improve efficiency and emissions of small-scale turbines and 
combined heat and power (CHP) systems to reduce impact of 
industry on disadvantaged communities

Approach 

Utilize advanced materials, AM, and advanced cooling designs to 
increase firing temperature by 100 °C

Benefits 

• Reduce payback period for CHP plants

• Reduce sequestered CO2 and fuel consumption

Advanced (ΔTT4=100 °C)

Target Range

Baseline
Target

4) Incremental Impingement2) Vane (baseline)1) Blade (baseline) 3) NETL Double Wall 

Straub et al., 2023 (all figures)
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Turbines MYRP Small Turbines
Design and Manufacture of High-Speed Cascade Test Airfoils 

Baseline Blade Incremental Impingement Double Wall

• Integrate symmetric designs in National Experimental Turbine (NExT) profile

• Conduct numerical modeling to understand performance

• Develop design for AM guidelines

Penn State Proprietary
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Turbines MYRP Small Turbines
High-Speed Cascade Test

Test conditions:
Hot gas: up to T = 250 °F and  P = 70 

psia

Re: 7 × 105 to 1.4 × 106

Heat Load Parameter (HLP): 0.5 to 2

Technology map.

Design 3

PSU ExCCL High-Speed Cascade

Design 2

Design 1

Test campaign is ongoing. Periodicity plots and infrared images 
shown here are prior work provided by PSU.



11

sCO2 Heat Transfer

• Pathway to direct sCO2 turbine thermal management

• Novel approach to evaluate TBC performance in sCO2 

environment

• Pathway toward enhanced condensation through AM

Small Turbines Heat Transfer

• Design for AM guidelines and flow data 

• Approaches to model conjugate heat transfer in complex AM 

geometries

• Spatially resolved overall cooling effectiveness in scaled 

thermal environment across range of HLP and novel integrated 

cooling strategies

Conclusions

Penn State Proprietary
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