2024 UTSR & Advanced Turbines Program Review Meeting September 25<sup>th</sup>, 2024



Physics Exploration and Analysis of Hydrogen-fueled Rotating Detonation Engines using Advanced Turbulent Combustion Modeling & High-fidelity Simulation Tools



#### PINAKI PAL (PI), MUHSIN AMEEN (Co-PI), CHAO XU (Co-PI)

#### SHUBHANGI BANSUDE, BENJAMIN KEETON, ISLAM KABIL

Department of Advanced Propulsion and Power Transportation and Power Systems Division Argonne National Laboratory

## ACKNOWLEDGMENTS



Fossil Energy and Carbon Management

#### **Advanced Turbines Program**

Bob Schrecengost (Program Manager) John Crane (Technology Manager) Matthew F. Adams (Project Manager)



**Research & Innovation Center** 

Donald Ferguson Peter Strakey



Argonne LCRC



**CFD** software licenses



## ROTATING DETONATION ENGINE (RDE) What does it have to offer ?

- Detonation-based power cycles result in a pressure gain as reactants are converted to products
- Faster and more intense heat release, decreased entropy generation, more available work and thermal efficiency than deflagrative combustion

#### RDEs offer:

- ✓ Steady source of thrust
- ✓ High frequency: 100s to 1000s of Hz
- ✓ Compact design with no moving parts
- ✓ Well-suited for operation with hydrogen fuel for stationary power generation applications





# **ROTATING DETONATION ENGINE (RDE)**

### **Practical operability aspects**

- A multitude of factors affect the performance of RDEs:
- fuel and oxidizer compositions
- global equivalence ratio
- fuel/air mass flow rates
- stagnation and back pressures
- injector geometry/configuration
- detonation channel geometry
- RDC-inlet and RDC-turbine interactions





# **ROTATING DETONATION ENGINE (RDE)**

### **Practical operability aspects**

- A multitude of factors affect the performance of RDEs:
- fuel and oxidizer compositions
- global equivalence ratio
- fuel/air mass flow rates
- stagnation and back pressures
- injector geometry/configuration
- detonation channel geometry
- RDC-inlet and RDC-turbine interactions
- Practical non-premixed RDE operation exhibits non-ideal deflagrative combustion phenomena; a mechanism of pressure loss





CB: contact burning PC: parasitic combustion CC: commensal combustion

Chacon & Gamba, AIAA SciTech 2019



# **ROTATING DETONATION ENGINE (RDE)**

### **Practical operability aspects**

- A multitude of factors affect the performance of RDEs:
- fuel and oxidizer compositions
- global equivalence ratio
- fuel/air mass flow rates
- stagnation and back pressures
- injector geometry/configuration
- detonation channel geometry
- RDC-inlet and RDC-turbine interactions
- Practical non-premixed RDE operation exhibits non-ideal deflagrative combustion phenomena; a mechanism of pressure loss
- Interaction of detonation wave(s) with wall boundary layers impacts wall heat transfer; relevant to RDE thermal management





## **ROTATING DETONATION ENGINE (RDE)** CFD modeling challenges

- Predictive and computationally efficient numerical modeling can complement experiments, and guide the development of practical RDE-based PGC systems
- However, multiple challenges exist for RDE CFD modeling:
- Expensive to incorporate <u>detailed (& stiff) fuel chemistry in</u> <u>large-domain CFD simulations</u> with (~10-100M) grid points
- Typical finite-rate chemistry (FRC) models do not account for <u>turbulence-chemistry interaction (TCI)</u> effects that can impact the CFD model capability to predict deflagrative losses
- Detonation-boundary layer interactions are not well studied due to high cost of wall-resolved simulations; subgrid wall models used in coarse-grained CFD are not well-validated for RDE-like conditions



$$\rho \frac{DY_k}{Dt} = -\nabla \cdot \mathbf{j}_k + \dot{\omega_k}$$

for  $k = 1, 2, ..., N_{species}$ 



DOE leadership-class

supercomputers

Experimental data from NETL Optical RDE

# **PROJECT OVERVIEW**

## **Overarching goals**

- Advance/accelerate predictive RDE CFD tools
- Leverage Argonne-NETL team's unique computational/experimental capabilities and leadership-class supercomputing for physics exploration and analysis of <u>hydrogen RDEs</u>
- Project Tasks:

**TASK 1:** Reduced-order turbulent combustion models for predictive and computationally-efficient CFD simulations of full-scale RDEs

**TASK 2:** Scale-resolving simulations of RDErelevant configurations to investigate TCI and wall boundary layer effects; improve turbulent combustion and wall models

**TASK 3:** Analysis of the effects of injector design on non-ideal parasitic losses in RDEs

**TASK 4:** Understanding the impact of ignition mechanism and initial transients on the quasi-steady behavior in RDEs







Test configuration: NETL water-cooled  $H_2$ -air RDE rig





DOE leadership-class

supercomputers

Experimental data from NETL Optical RDE

# **PROJECT OVERVIEW**

## **Overarching goals**

- Advance/accelerate predictive RDE CFD tools
- Leverage Argonne-NETL team's unique computational/experimental capabilities and leadership-class supercomputing for physics exploration and analysis of <u>hydrogen RDEs</u>
- Project Tasks:

**TASK 1:** Reduced-order turbulent combustion models for predictive and computationally-efficient CFD simulations of full-scale RDEs

**TASK 2:** Scale-resolving simulations of RDErelevant configurations to investigate TCI and wall boundary layer effects; improve turbulent combustion and wall models

**TASK 3:** Analysis of the effects of injector design on non-ideal parasitic losses in RDEs

**TASK 4:** Understanding the impact of ignition mechanism and initial transients on the quasi-steady behavior in RDEs







Test configuration: NETL water-cooled  $H_2$ -air RDE rig





## TASK 1a

#### Turbulent combustion modeling for predictive and efficient RDE CFD simulations

- Argonne's in-house compressible Unsteady Flamelet Progress Variable (UFPV) model captures turbulent nonpremixed combustion with subgrid TCI effects
- Reduced-order representation of thermochemical state as a function of a few conditioning variables (*Z*, *Z*<sub>var</sub>, *C*, *P*, etc.) as a look-up table → achieves speedup over FRC approach via reduction in the number of transport equations and associated chemical stiffness
- Previously demonstrated for spray flames, jet-in-crossflow (JICF), IC engine, and scramjet engine CFD simulations
- Goal: Adapt the UFPV modeling framework for premixed/partially-premixed RDE-like conditions and demonstrate in RDE large-eddy simulations (LES)
- Predictive accuracy and simulation speedup will be benchmarked against the baseline FRC approach and NETL RDE experimental data







## TASK 1b

#### **Turbulent combustion modeling for predictive and efficient RDE CFD simulations**

- Chemical explosive mode analysis (CEMA) based framework developed for <u>advanced flame diagnostics</u> and multi-regime turbulent combustion modeling
  - Identifies local combustion modes in the reacting flow-field based on eigen-analysis of the Chemical Jacobian
  - Suitable combustion models can be locally assigned onthe-fly in a regime-adaptive fashion
  - Accelerates simulations compared to FRC approach while preserving accuracy
- Goal: Demonstrate CEMA-aided regime-adaptive combustion model and compare against monolithic FRC and UFPV models for RDE-LES

#### Combustion regime analysis of RDEs<sup>1,2</sup>





#### Modeling of turbulent partially premixed flames<sup>3</sup>



# TASK 1a PROGRESS UPDATE

### **UFPV model adaptation for premixed/partially-premixed flames**

- Premixed UFPV look-up tables were generated based on freely propagating 1D premixed flames (instead of counterflow nonpremixed flames)
- The UFPV model was coupled with CONVERGE CFD solver
- Preliminary RANS demonstration studies were performed for verification and validation of the premixed UFPV implementation





# TASK 1a PROGRESS UPDATE

## **UFPV** model adaptation for premixed/partially-premixed flames

- Premixed UFPV look-up tables were generated based on freely propagating 1D premixed flames (instead of counterflow nonpremixed flames)
- The UFPV model was coupled with CONVERGE CFD solver
- Preliminary RANS demonstration studies were performed for verification and validation of the premixed UFPV implementation





#### Piloted partially-premixed methane-air flame (Sandia Flame D)





#### **Centerline profiles**

FRC

60

## TASK 1a PROGRESS UPDATE Ongoing/Future work

- Extension of premixed UFPV modeling framework to detonations and demonstration for fully-premixed detonation tube simulations is currently underway
- Afterwards, the extended UFPV model will be applied to practical RDE configurations





TASK 2

2D DNS of Hydrogen DI Under-expanded Jets ARC-M1 combustor: High-fidelity WRLES using Nek5000

Nunno et al., AIAA-2022-1404

#### Scale-resolving simulations using high-order Nek5000 CFD solver

- High-order spectral element method (SEM) formulation in Argonne's Nek5000 solver
  - Solution is represented as  $N^{\text{th}}$  order tensor-product polynomials ( $N \sim 5-15$ )
  - Exponential (spectral) convergence with N
  - Discontinuous Galerkin version to handle compressible flows with shock waves
- Capability to handle complex/realistic engine geometries (struc./unstruc. meshes)
- Demonstrated scalability on leadership-class DOE supercomputers
- Extensively used for high-fidelity simulations of compressible non-reacting & low-mach/incompressible reacting/non-reacting flows relevant to gas turbines and piston engines
- Goal: Leverage Nek5000 to perform DNS/WRLES of RDE-relevant configurations to investigate TCI and wall boundary layer effects; utilize high-fidelity datasets to improve turbulent combustion and subgrid wall models





## TASK 2 PROGRESS UPDATE

Keeton et al., AIAA SciTech 2025 (accepted)

### **Compressible reacting Nek5000 solver development**

- Solves for chemically reacting compressible Navier-Stokes equations
- Fully-conservative Discontinuous Galerkin (DG) SEM with artificial viscosity to stabilize the solution near flow discontinuities (shocks)
- Thermodynamic/transport properties and reaction rates computed using Cantera
- Positivity-preserving limiters to enforce non-negative energy and species concentrations
- Operator splitting schemes to separately solve for convection-diffusion and reaction





#### **1D** *laminar* premixed flame



Keeton et al., AIAA SciTech 2025 (accepted)

## **TASK 2 PROGRESS UPDATE**

## **Compressible reacting Nek5000 solver demonstration for detonations**

#### 1D detonation setup

- 1D Euler
- $x \in [0, 0.45]$  m
- $h = 90 \ \mu m$
- Polynomial order, N = 3
- H<sub>2</sub>/O<sub>2</sub>/Ar detailed chemistry
- $P_0 = 0.0667$  bar
- $T_0 = 298 \text{ K}$
- $X_{H_2}: X_{O_2}: X_{Ar} = 2:1:7$



|         | $T_{vN}$ [K] | $p_{vN}$ [kPa] |  |  |
|---------|--------------|----------------|--|--|
| SDT     | 1899.9       | 174.5          |  |  |
| Nek5000 | 1902.4       | 174.6          |  |  |



Keeton et al., AIAA SciTech 2025 (accepted)

# **TASK 2 PROGRESS UPDATE**

### **Compressible reacting Nek5000 solver demonstration for detonations**

#### 2D detonation setup

- 2D Euler
- $x \in [0, 0.45]$  m
- $y \in [0, 0.06]$  m
- $h = 90 \ \mu m$
- Polynomial order, N = 2
- E = 3.34 M
- Grid points = 30M
- H<sub>2</sub>/O<sub>2</sub>/Ar detailed chemistry
- $P_0 = 0.0667$  bar
- $T_0 = 298 \text{ K}$
- $X_{H_2}: X_{O_2}: X_{Ar} = 2:1:7$



• Future work: Detonation propagation in stratified mixtures; turbulent fluctuations; investigate TCI effects



## FULL-SCALE RDE SIMULATIONS NETL-RDE LES modeling with finite-rate chemistry

- Wall-modeled large-eddy simulation (WMLES) framework developed in CONVERGE
- Detailed hydrogen/air chemistry 9 species and 21 reactions (O'Conaire *et al.* 2004)
- Adaptive mesh refinement (AMR) based on velocity, temperature, and pressure for trade-off between accuracy and computation time
- Preliminary model validation was performed against NETL experimental data

| Case<br># | Air mass<br>flow rate<br>(kg/s) | Fuel mass<br>flow rate<br>(kg/s) | Global<br>equivalence<br>ratio | T <sub>air</sub><br>(K) | T <sub>fuel</sub><br>(K) | P <sub>back</sub><br>(kPa) | Expt.<br>wave<br>speed<br>(m/s) | CFD wave<br>speed<br>(m/s) |
|-----------|---------------------------------|----------------------------------|--------------------------------|-------------------------|--------------------------|----------------------------|---------------------------------|----------------------------|
| 1         | 0.5621                          | 0.01191                          | 0.725                          | 431                     | 331                      | 133                        | 1615                            | 1670 <u>+</u> 20           |
| 2         | 0.5218                          | 0.01362                          | 0.894                          | 432                     | 330                      | 131                        | 1600                            | 1750 <u>+</u> 15           |

The LES-FRC model will be utilized for Tasks 1-4



## THANK YOU

## pal@anl.gov

