2024 UTSR & Advanced Turbines Program Review Meeting September 25th, 2024

Physics Exploration and Analysis of Hydrogen-fueled Rotating Detonation Engines using Advanced Turbulent Combustion Modeling & High-fidelity Simulation Tools

PINAKI PAL (PI), MUHSIN AMEEN (Co-PI), CHAO XU (Co-PI)

SHUBHANGI BANSUDE, BENJAMIN KEETON, ISLAM KABIL

Department of Advanced Propulsion and Power Transportation and Power Systems Division Argonne National Laboratory

ACKNOWLEDGMENTS

Fossil Energy and Carbon Management

Advanced Turbines Program

Bob Schrecengost (Program Manager) John Crane (Technology Manager) Matthew F. Adams (Project Manager)

Research & Innovation Center

Donald Ferguson Peter Strakey

Argonne LCRC

CFD software licenses

What does it have to offer ?

- Detonation-based power cycles result in a *pressure gain* as reactants are converted to products
- Faster and more intense heat release, decreased entropy generation, more available work and thermal efficiency than deflagrative combustion

▪ **RDEs offer:**

- ✓*Steady source of thrust*
- ✓*High frequency: 100s to 1000s of Hz*
- ✓*Compact design with no moving parts*
- ✓*Well-suited for operation with hydrogen fuel for stationary power generation applications*

Practical operability aspects

- A multitude of factors affect the performance of RDEs:
- \triangleright fuel and oxidizer compositions
- \triangleright global equivalence ratio
- \triangleright fuel/air mass flow rates
- ➢ stagnation and back pressures
- \triangleright injector geometry/configuration
- ➢ detonation channel geometry
- ➢ RDC-inlet and RDC-turbine interactions

Practical operability aspects

- A multitude of factors affect the performance of RDEs:
- \triangleright fuel and oxidizer compositions
- \triangleright global equivalence ratio
- \triangleright fuel/air mass flow rates
- ➢ stagnation and back pressures
- \triangleright injector geometry/configuration
- ➢ detonation channel geometry
- ➢ RDC-inlet and RDC-turbine interactions
- **Practical non-premixed RDE operation exhibits non-ideal** deflagrative combustion phenomena; a mechanism of pressure loss

CB: contact burning PC: parasitic combustion CC: commensal combustion

Chacon & Gamba, AIAA SciTech 2019

Practical operability aspects

- A multitude of factors affect the performance of RDEs:
- \triangleright fuel and oxidizer compositions
- ➢ global equivalence ratio
- \triangleright fuel/air mass flow rates
- ➢ stagnation and back pressures
- \triangleright injector geometry/configuration
- ➢ detonation channel geometry
- ➢ RDC-inlet and RDC-turbine interactions
- **Practical non-premixed RDE operation exhibits non-ideal** deflagrative combustion phenomena; a mechanism of pressure loss
- **.** Interaction of detonation wave(s) with wall boundary layers impacts wall heat transfer; relevant to RDE thermal management

ROTATING DETONATION ENGINE (RDE) CFD modeling challenges

- Predictive and computationally efficient numerical modeling can complement experiments, and guide the development of practical RDE-based PGC systems
- However, multiple challenges exist for RDE CFD modeling:
- ➢Expensive to incorporate *detailed (& stiff) fuel chemistry* in large-domain CFD simulations with (~10-100M) grid points
- ➢Typical finite-rate chemistry (FRC) models do not account for *turbulence-chemistry interaction (TCI)* effects that can impact the CFD model capability to predict deflagrative losses
- ➢*Detonation-boundary layer interactions* are not well studied due to high cost of wall-resolved simulations; subgrid wall models used in coarse-grained CFD are not well-validated for RDE-like conditions

$$
\rho \frac{D Y_k}{D t} = - \nabla \cdot \mathbf{j}_k + \omega_k
$$

for $k = 1, 2, ..., N_{species}$

DOE leadership-class

Experimental data from
NETL Optical RDE

PROJECT OVERVIEW

Overarching goals

- Advance/accelerate predictive RDE CFD tools
- Leverage Argonne-NETL team's unique computational/experimental capabilities and leadership-class supercomputing for physics exploration and analysis of hydrogen RDEs
- **Project Tasks:**

TASK 1: Reduced-order turbulent combustion models for predictive and computationally-efficient CFD simulations of full-scale RDEs

TASK 2: Scale-resolving simulations of RDErelevant configurations to investigate TCI and wall boundary layer effects; improve turbulent combustion and wall models

TASK 3: Analysis of the effects of injector design on non-ideal parasitic losses in RDEs

TASK 4: Understanding the impact of ignition mechanism and initial transients on the quasi-steady behavior in RDEs

DOE leadership-class supercomputers Experimental data from
NETL Optical RDE

PROJECT OVERVIEW

Overarching goals

- Advance/accelerate predictive RDE CFD tools
- Leverage Argonne-NETL team's unique computational/experimental capabilities and leadership-class supercomputing for physics exploration and analysis of hydrogen RDEs
- **Project Tasks:**

TASK 1: Reduced-order turbulent combustion models for predictive and computationally-efficient CFD simulations of full-scale RDEs

TASK 2: Scale-resolving simulations of RDErelevant configurations to investigate TCI and wall boundary layer effects; improve turbulent combustion and wall models

TASK 3: Analysis of the effects of injector design on non-ideal parasitic losses in RDEs

TASK 4: Understanding the impact of ignition mechanism and initial transients on the quasi-steady behavior in RDEs

behavior

Effects of injector

design on parasitic

combustion

Test configuration: NETL water-cooled H2 -air RDE rig

TASK 1a TASK 1a TASK 1a **TASK** 1a **TASK 1**

Turbulent combustion modeling for predictive and efficient RDE CFD simulations

- Argonne's in-house **compressible Unsteady Flamelet Progress Variable (UFPV) model** captures turbulent nonpremixed combustion with subgrid TCI effects
- Reduced-order representation of thermochemical state as a function of a few conditioning variables (*Z*, *Zvar* , *C, P, etc.)* as a look-up table → *achieves speedup over FRC approach via reduction in the number of transport equations and associated chemical stiffness*
- Previously demonstrated for spray flames, jet-in-crossflow (JICF), IC engine, and scramjet engine CFD simulations
- **Goal:** Adapt the UFPV modeling framework for premixed/partially-premixed RDE-like conditions and demonstrate in RDE large-eddy simulations (LES)
- Predictive accuracy and simulation speedup will be benchmarked against the baseline FRC approach and NETL RDE experimental data

TASK 1b

Turbulent combustion modeling for predictive and efficient RDE CFD simulations

- **Chemical explosive mode analysis (CEMA)** based framework developed for advanced flame diagnostics and multi-regime turbulent combustion modeling
	- Identifies local combustion modes in the reacting flow-field based on eigen-analysis of the Chemical Jacobian
	- Suitable combustion models can be locally assigned onthe-fly in a regime-adaptive fashion
	- Accelerates simulations compared to FRC approach while preserving accuracy
- **Goal:** Demonstrate CEMA-aided regime-adaptive combustion model and compare against monolithic FRC and UFPV models for RDF-LES

Combustion regime analysis of RDEs1,2

Modeling of turbulent partially premixed flames³

TASK 1a PROGRESS UPDATE

UFPV model adaptation for premixed/partially-premixed flames

- Premixed UFPV look-up tables were generated based on freely propagating 1D premixed flames (instead of counterflow nonpremixed flames)
- The UFPV model was coupled with CONVERGE CFD solver
- Preliminary RANS demonstration studies were performed for verification and validation of the premixed UFPV implementation

FRC UFPV $6.3e+02$ 1000 1500 $2.0e + 03$ $0.0e + 00$ 0.005 0.01 0.015 1.9e-02

0.03 $\mathop{\mathbb{H}}\limits_{\bowtie}$ 0.02

 0.00

 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$

TASK 1a PROGRESS UPDATE

UFPV model adaptation for premixed/partially-premixed flames

- Premixed UFPV look-up tables were generated based on freely propagating 1D premixed flames (instead of counterflow nonpremixed flames)
- **.** The UFPV model was coupled with CONVERGE CFD solver
- Preliminary RANS demonstration studies were performed for verification and validation of the premixed UFPV implementation

Piloted partially-premixed methane-air flame (Sandia Flame D)

 \circ **FRC**

40

60

TASK 1a PROGRESS UPDATE

Ongoing/Future work

- Extension of premixed UFPV modeling framework to detonations and demonstration for fully-premixed detonation tube simulations is currently underway
- Afterwards, the extended UFPV model will be applied to practical RDE configurations

TASK 2

ARC-M1 combustor: High-fidelity WRLES using Nek5000 2D DNS of Hydrogen DI Under-expanded Jets

Nunno et al., AIAA-2022-1404

Scale-resolving simulations using high-order Nek5000 CFD solver

- High-order spectral element method (SEM) formulation in Argonne's Nek5000 solver
	- Solution is represented as *N*th order tensor-product polynomials (*N* ~ 5-15)
	- Exponential (spectral) convergence with *N*
	- Discontinuous Galerkin version to handle compressible flows with shock waves
- Capability to handle complex/realistic engine geometries (struc./unstruc. meshes)
- Demonstrated scalability on leadership-class DOE supercomputers
- Extensively used for high-fidelity simulations of compressible non-reacting & low-mach/incompressible reacting/non-reacting flows relevant to gas turbines and piston engines
- **Goal:** Leverage Nek5000 to perform DNS/WRLES of RDE-relevant configurations to investigate TCI and wall boundary layer effects; utilize high-fidelity datasets to improve turbulent combustion and subgrid wall models

TASK 2 PROGRESS UPDATE

Keeton et al., AIAA SciTech 2025 (accepted)

Compressible reacting Nek5000 solver development

- Solves for chemically reacting compressible Navier-Stokes equations
- Fully-conservative Discontinuous Galerkin (DG) SEM with artificial viscosity to stabilize the solution near flow discontinuities (shocks)
- **Thermodynamic/transport properties and reaction rates computed using Cantera**
- **Positivity-preserving limiters to enforce non-negative energy and species concentrations**
- Operator splitting schemes to separately solve for convection-diffusion and reaction

TASK 2 PROGRESS UPDATE

Keeton et al., AIAA SciTech 2025 (accepted)

Compressible reacting Nek5000 solver demonstration for detonations

1D detonation setup

- 1D Euler
- $x \in [0, 0.45]$ m
- $h = 90 \mu m$
- Polynomial order, $N = 3$
- H₂/O₂/Ar detailed chemistry
- $P_0 = 0.0667$ bar
- $T_0 = 298 \text{ K}$
- $X_{H_2}: X_{O_2}: X_{Ar} = 2:1:7$

Keeton et al., AIAA SciTech 2025 (accepted)

TASK 2 PROGRESS UPDATE

Compressible reacting Nek5000 solver demonstration for detonations

2D detonation setup

- 2D Euler
- $x \in [0.0.45]$ m
- $v \in [0, 0.06]$ m
- $h = 90 \mu m$
- Polynomial order, $N = 2$
- $E = 3.34M$
- Grid points $= 30M$
- H₂/O₂/Ar detailed chemistry
- $P_0 = 0.0667$ bar
- $T_0 = 298 \text{ K}$
- $X_{H_2}: X_{O_2}: X_{Ar} = 2:1:7$

▪ **Future work:** Detonation propagation in stratified mixtures; turbulent fluctuations; investigate TCI effects

FULL-SCALE RDE SIMULATIONS NETL-RDE LES modeling with finite-rate chemistry

- Wall-modeled large-eddy simulation (WMLES) framework developed in CONVERGE
- Detailed hydrogen/air chemistry 9 species and 21 reactions (O'Conaire *et al.* 2004)
- Adaptive mesh refinement (AMR) based on velocity, temperature, and pressure for trade-off between accuracy and computation time
- Preliminary model validation was performed against NETL experimental data

▪ The LES-FRC model will be utilized for Tasks 1-4

THANK YOU

pal@anl.gov

