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Goal of this project is to create a design optimization paradigm that marries 
combustion physics and manufacturing
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Technical approach uses an optimization framework for incorporating combustion 
and manufacturing constraints 
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High-fidelity combustion simulation uses STAR-CCM+ to allow more rapid industry 
adoption
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—Large eddy simulation (LES) using STAR-CCM+

—Flamelet generated manifold (FGM) model 

—Unstructured polyhedral mesh (~16.7 million cells)



Major accomplishments of this program
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1. Integration of design for AM (DfAM) and combustion behaviors to optimize a design for 
fuel-flexible operation

2. Use of commercial tools and open-source resources (Python code, standard CAD 
definitions, etc.) to implement optimization for better translation

3. AM optimization based on mathematical formulation rather than grid-based, allowing 
better transference to other applications

4. Better understanding of the role of pilot jets in flow stability, flameholding

5. New understanding of the impact of AM surface roughness on flameholding

6. Design and testing of both optimized injector designs and clean-sheet design based on 
lessons learned from optimization process
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This framework integrates the optimization for fuel flexibility and the AM constraints 
into one workflow
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Fuel Flexibility AM Constraints

Extend theory by 
Sattelmayer’s 
group to predict 
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layer 
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for powder removal



Integration of design for AM (DfAM) to optimize a design for self-supporting 
printing
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The overhangs identified using NURBS was in agreement with the 3DXpert setup 
for 55° self-supporting overhang angle limit on the ProX 320 machine
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We printed the injector geometries using metal L-PBF on the 3DSystems ProX 320 
in Inconel 718  for high temperature creep resistance
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Having self-supporting structures is essential in AM L-PBF, especially for complex 
geometry and internal features that are challenging to machine

11

Difference in support requirement 
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Lower post-processing costs



Incorporating combustion behaviors to optimize a design minimizing flame 
flashback propensity
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Integration of design for AM (DfAM) and combustion behaviors to optimize a 
design for fuel-flexible operation
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Integration of design for AM (DfAM) and combustion behaviors to optimize a 
design for fuel-flexible operation
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Use of commercial tools and open-source resources (Python code, standard CAD 
definitions, etc.) to implement optimization for better translation
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IGES file NURBS-Python (geomdl)

Read NURBS Modify & Replace NURBS

Modified IGES file

IGES file represents virtually any given CAD shape, free-form surfaces are stored as NURBS



Major accomplishments of this program
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Effects of pilot flame equivalence ratio and mass flow rate on combustion instability 
suppression explored in combined experimental + computational study

17Li, J., Kwon, H., Seksinsky, D., Doleiden, D., Xuan, Y., O’Connor, J., Blust, J., Akiki, M., (2021) “Describing the Mechanism of Instability Suppression Using a Central Pilot Flame With Coupled 
Experiments and Simulations” in Journal of Engineering for Gas Turbines and Power, 144(1), p. 011015

https://doi.org/10.1115/1.4052384
https://doi.org/10.1115/1.4052384


Higher pilot equivalence ratio leads to higher temperatures and higher radical 
concentrations in the recirculation region
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While previous work suggested that pilot flames help suppress instability through 
a thermal mechanism, we know velocity-coupling processes are important
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While previous work suggested that pilot flames help suppress instability through 
a thermal mechanism, we know velocity-coupling processes are important
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The experiment is modeled and simulated using LES in STARCCM+ for a range of 
pilot flow rates that mimic the experiments
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Changing the pilot flow rate does not dramatically change the structure of the 
main jet, but does change the centerline flow profile significantly
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Spectral proper orthogonal decomposition is used to understand the dynamics of 
the system, where all cases show significant oscillations in the shear layer
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The stability of the system is analyzed using a linear hydrodynamic stability tool – 
FEHydro – to determine
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1. Obtain Time Averaged fields of 
velocities and eddy-viscosity

2. Interpolate normalized Data onto 
Triangular adequately refined Mesh

3. Global Eigenvalue Spectrum
4. Spatial Variation of the Eigen 

Components

5. Generate the Adjoint of the 
dominant mode

6. Structural Sensitivity analysis provide to  
regions of the flow most sensitive to disturbances

7. Resolvent Analysis: Modes respond 
strongly to external forcing

8. Corresponding mode-shapes 
from resolvent analysis



Major accomplishments of this program
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Realistic equivalent sand-grain roughness were defined in the RANS simulation 
performed to study roughness effects on flame stability
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As-built roughness for the printed injector selectively and realistically simulated
Change in Boundary layer profile for different roughness regimes in the Vertical section 

of injector



The heat release distributions show decrease in flame-length between rough and 
smooth injector
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At H70 case, the flame-length is both the actual flame-
length as well as the flashback length, hence the overall 
flame-length increases in the smooth Injector.



With increasing hydrogen enrichment, smooth injector becomes blow-off 
resistant, whereas rough injector is resistant to flashback.
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60% H2
(phi-0.35-0.75)



Major accomplishments of this program

29

1. Integration of design for AM (DfAM) and combustion behaviors to optimize a design for 
fuel-flexible operation

2. Use of commercial tools and open-source resources (Python code, standard CAD 
definitions, etc.) to implement optimization for better translation

3. AM optimization based on mathematical formulation rather than grid-based, allowing 
better transference to other applications

4. Better understanding of the role of pilot jets in flow stability, flameholding

5. New understanding of the impact of AM surface roughness on flameholding

6. Design and testing of both optimized injector designs and clean-sheet design based on 
lessons learned from optimization process



Design and testing of both optimized injector designs and clean-sheet design 
based on lessons learned from optimization process
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Part consolidation using AM:
10 parts → 1 part

Fuel Injector

Build #1 :
Baseline & DfAM designs with different 
surface roughness (processing)

Build #2 :
DfAM + Flow optimized designs with 
fuel delivery; Clean-sheet design



The CH* chemiluminescence images collected experimentally matched up the 
trends with the CH* distribution obtained from the simulations of the baseline
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Experiment
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We also ran the same simulation settings on the DfAM geometry, and we did see 
that the flame anchored upstream
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We found near wall negative velocities (flow separation) in LES for the baseline 
design which represents complex flow features not captured by RANS
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DfAM

Separation bubbles

Time-averaged axial velocity (m/s)
-10 25 60

DfAM design changes the swirl number such that boundary layer separation does not occur



Design and testing of both optimized injector designs and clean-sheet design 
based on lessons learned from optimization process
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Additive Manufacturing  constraints

NURBS-based design Physics Considerations

▪ Ensures flame stability

▪ Prevents  flashback

▪ Accounts for fuel flexibility

▪ Represents complex, organic shapes

▪ Provides control points

▪ Info exchange stored in standard CAD 
formats – IGES

▪ DesignX, Python 3.9 – geomdl

▪ Ensures fabrication of complex structures

▪ Enables generation of self-supporting structures

▪ 3DXpert, Control X, Pro X 320, IN718

▪ Checks primal convergence

▪ Performs adjoint calculations

▪ Provides gradients for large no. of design variables

▪ StarCCM+

Discrete adjoint method - CFD



Questions?
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