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Development of Syngas Oxy-Combustion Turbine 
for Use in Advanced sCO2 Power Cycles

 Goal: Develop a detailed design for a sCO2 direct fired oxy-fuel turbine 
for utility scale (300 MWe Net, 450 MW turbine power) utilizing a coal 
syngas fuel, with the ability to be co-fired with natural gas. 
 Operation in an Allam-Fetdvedt cycle targets near zero emissions, while 

targeting 43% LHV system efficiency. 
 The density and heat transfer properties of sCO2 can take advantage of 

compact turbomachinery and high performing thermal management. 
 Technoeconomic analysis performed with turbine costs from detail 

design
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Turbine Conditions
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 How does this compare to steam and gas turbines? 
– Steam (AUSC): 330 bar, 670°C (Source: GE Steam Power)
– Gas Turbine: 23 bar, 1430°C (Source: GE H-class)



• Turbine Inlet: 305 bar @ 1,150oC
• Turbine Exhaust: 30 bar
• Turbine Power: ~450 Mwmech (300 MWe Cycle)
• Cooling flow supplied to the turbine @ 400oC

Comparison with NGCC with CCS 
Attribute NGCC Oxy-Fuel SCO2

Power generator type NGCC Allam with O2 

Storage

CCS plant technology Amine CO2 is Working Fluid

Capital cost  $/kW $1481 $1471

Fixed O&M cost $/kW $48.96 $48.01

Variable O&M cost $/MWh-net $3.96 $2.66

Fuel Cost  $/MWh-net $45.87 $43.45*80%

=$34.76*

Power generator heat rate (kJ/kWh) 7,118 6,743

Power generator LHV net plant efficiency 50.6% 53.4% 

Flexibility enabler n/a LOX Storage

CO2 capture rate 90.7% 98.2%

Weiland, N., White, C., 2019, “Performance and Cost Assessment of a Natural Gas-Fueled 
Direct sCO2 Power Plant,” NETL-PUB-22274, National Energy Technology Laboratory, 
U.S. Dept. of Energy, March 15, 2019



Project Components
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Turbine Design

Materials Testing Component Testing



Project Team

SwRI: PI, Heat transfer testing, materials testing, turbine design. 

GE:  Aerodynamic flowpath definition, design support. 

Purdue: Turbine first stage optimization, blade cascade testing.

UCF: Pin fin, impingement heat transfer testing. 

8 Rivers: Thermodynamic cycle model. 

EPRI: Technoeconomic study. 

Air Liquide: Oxy-combustor development. 
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Component Testing
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Background on 1st Stage Blade Optimization

 Purdue University has led the optimization of the 1st stage blade from GE 
mean line design, optimizing for efficiency and heat load.
 Best Paper Award at 2024 sCO2 Symposium: Tuite, et. al., “Blade and Rim Seal 

Design of a First Stage High Pressure Turbine for a 300 MWe Supercritical 
CO2 Power Cycle”. 
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S1B cascade testing setup
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 The Purdue Big Rig for Aerothermal Stationary Turbine Analysis (BRASTA) 
was utilized with modifications for a S1B cascade test.  



Test Rig – S1B Cascade Test
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Fully-assembled Purdue BRASTA with blades and 
instrumentation assembled internally. 

Inlet pressure rake upstream of flow-
conditioning gauze. 



Test Rig – S1B Cascade Test
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Sonic plate actuation downstream of the test section 
allows for modulation of flow rate/Reynolds number. 

Instrumented blade section including pressure tapped section 
(6 o’clock, 9 o’clock) and oil vis sections (12 o’clock, 4 o’clock) 
for baseline and optimized blades. 



Test Rig – S1B Cascade Test

 Oil visualization with 
pigmented oils is used for 
both the baseline and 
optimized blade geometries. 

 Agreement seen between 
shear stress contours in 
experiment and CFD 
predictions. 
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Materials Testing
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Autoclave Testing – Initial Setup
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 Autoclave tests are for material and coatings exposure and oxidation characteristics 

observation at turbine inlet conditions. 

 An induction heater with susceptor is employed with TCs inserted to measure 

temperature throughout stack of material samples. 



Autoclave Testing – Revised design
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 Monolithic 310S specimen holder and susceptor. 

 Improved reliability compared to graphite susceptor, decreased resistivity has led to 

lower temperatures achieved. Requires modifications to setup for decreased heat leak. 



Autoclave Testing – Current status
 September 2024: Completion of test setup modifications to improve 

insulation and reduce heat loss from specimen holder region of 
autoclave. 
 Beginning October 2024: Complete remaining 5,000 hr. testing at 

temperatures up to 1200°C and pressures up to 300 bar to represent 
turbine inlet conditions. 
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TBC Cyclic Testing - Recap

 Tests performed in 2023 included different TBC 

coating methods on Haynes 230 for 500 cycles (50 

min. at temperature, 10 min. forced air cooling). 

– TBC-1: Thermal spray MCrAlY bond coat, thermal spray 

yttrium stabilized zirconia (YSZ) top coat.

– TBC-2: Plasma Enhanced Magnetron Sputtering (PEMS) 

MCrAlY bond coat, thermal sprayed (YSZ) top coat. 
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Experiments – Impingement and pin-fin heat transfer
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Testing at UCF (2022): Impingement data in sCO2 demonstrates 
cautionary use with certain correlations based on air data. 

Testing at UCF (2022): Pin-fin heat transfer in 
sCO2 shows alignment with Metzger correlation. 



Experiments – Mid-section serpentine cooling
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Testing at SwRI (2023): Mid-section serpentine cooling heat 
transfer in sCO2 produced Nusselt number enhancement 
ratios, over a Reynolds number range exceeding relevant 
existing literature. 



Turbine Design
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Turbine Design

24



Turbine Design
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Standard Operating Conditions
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1150°C
305 bar

415°C
30 bar 775°C 

30 bar
400°C
315 bar



Target Design Criteria
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 Hot section component lifetime (combustor, transition 

duct, S1N, S1B): 30k hrs

 Rotor lifetime: 150k hrs

 Pressure containing components designed to ASME BPVC, 

Section VIII.

 Rotordynamics completed according to API standards.

 Mitigate capital cost through the following strategies: 

– Minimize wetted area of HP sections to minimize required 

section thickness and sealing force. 

– Use cooling flow routing to jacket large diameter 

components to use chrome steels below their creep regime. 



Case Design
 Inner Case (315bar): Barrel case 
 Outer Case (50bar≈settleout): 

Horizontally split
 22X 5”x5’(nut to nut) K14072 (1Cr-1/2Mo) 

bolts
 1’-2’ thick case of J42045 (5Cr-1/2Mo)

 Twin 37” exhaust pipes (bottom)
 Twin 9.5” Cooling inlets (top)
 ~37” diffuser axial length
 2.5’ tall flanges
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Case Design
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 FEA at nominal loads used to verify sealing 

pressure is maintained for split case. 

 Limit load analysis converged according to 

BPVC Section VIII, Div. 2.



Case – Manufacturing Process
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Cast Drawing
Fabrication Drawing

 Turbine case manufacturing 
process includes casting, welding, 
and final machining. 
 Engineering drawings include 

sealing surfaces and keyway 
features. 

Final Machining Drawing
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Combustor Housing Design

 Combustor housing materials include high-strength cast 
steels (J42045), with Haynes 230 used for combustor 
nozzles due to localized high temperature region. 
 Limit load and local failure analyses completed and 

converged according to Section VIII, Div. 2. 
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Combustor Housing – Manufacturing Process
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Cast Drawing

Final Machining Drawing

Fabrication Drawing

 Combustor housing manufacturing 
process includes casting, welding, 
and final machining. 
 Engineering drawings include 

sealing surfaces and keyway 
features. 

32



Rotordynamic Review
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 Lateral Rotordynamic 
predictions show acceptable 
vibration response per API 
including

– Balance piston seal active (steady 
state operation)

– Balance piston seal inactive (start-
up)

– Range of imbalance conditions
– Range of possible bearing dynamic 

coefficient measurements

 Housing stiffness and connection to 
ground are important factors.
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S1B Internal Cooling Design
 Leading edge impingement
 Ribbed serpentine channels
 Pin-fin array
 Trailing edge ejection
 Thermal Barrier Coating
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S1B – External Heat Loads
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Purdue unsteady CFD conducted in 2024 includes 
S1N-S1B cavity purge cooling flow and combustor 
outlet flow non-uniformity effects.  

FE model imports external heat load on 
blade and platform, while applying internal 
heat transfer correlations locally. 



S1B FEA Result
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 2023: Pressure loading, 
centrifugal loading applied.

 Assumes Haynes 282 
creep properties

 2024: Pressure loading, centrifugal loading, thermal 
expansion effects with updated geometry and 
unsteady CFD for more accurate external load. 

 Localized regions remain with function value over 
1, signifying life prediction < 30k hrs. 

 Final iterations being completed to achieve 30k hr. 
life. 

 Validation of testing will take place in 2024/2025 
at SwRI facility reusing existing BP2 test rig. 



Cost estimation for TEA update
 To generate cost estimates the following RFQs have been sent to 

over 19 vendors: 
– Main Case (75 ton upper shell, 61 ton lower shell): Casting, welding 

and final machining. 
– Combustor Case (37 tons): Casting, welding and final machining. 
– Inner Case (12 tons): Forging, final machining. 

 The casting size was too heavy for a majority of facilities, 
Goodwin Steel Castings and Voest Alpine were two vendors who 
had sufficient capacity and provided budgetary quotes.
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Cost estimation for TEA update
 Sub-component costs have been 

estimated based on historical 
cost data and factoring for size 
differences. 

 Main remaining costs are the final 
machining budgetary quotes, 
turbine rotor, and blades/stators. 
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Component / Category Total Component / Category Cost
DE Labyrinth Seal 29,604$                                                 
NDE Labyrinth Seal 29,604$                                                 
Balance Piston Seal 151,990$                                              
Metallic Seals, Rings, and Retainers 40,962$                                                 
Alignment Keys 6,452$                                                   
Grayloc Materials 3,045,635$                                           
ANSI Flange Materials 10,699$                                                 
Superbolt Materials 142,743$                                              
Main Case [CASTING] 1,477,862$                                           
Combustor Case [CASTING] 634,475$                                              
Inner Case [FINAL MACHINED] 529,000$                                              
Exhaust Diffuser [FINAL CASTING] 95,195$                                                 
Turbine Rotor
Combustor Liners 561,600$                                              
Turbine Stator Block 15,127,318$                                        
Turbine Blades and Stators -$                                                       
Total ($ Million) 21.9$                                                     



Publications
 Logan Tuite, Purdue University, presented at the 2024 sCO2 Symposium in San Antonio: Paper 

102 Blade and Rim Seal Design of a First Stage High Pressure Turbine for a 300 MWe Supercritical 
CO2 Power Cycle. 

 Michael Marshall, Southwest Research Institute, presented at the 2024 sCO2 Symposium in 
San Antonio: Paper 67 Heat Transfer Experiments of Ribbed, Serpentine Cooling Passages with 
Supercritical CO2. 

 Logan Tuite, Purdue University, presented at the 2023 ASME Turbo Expo in Boston, 
Massachusetts: GT2023-101722, Optimization of an HPT Blade and Sector-Based Annular Rig 
Design for Supercritical CO2 Power Cycle Representative Testing. 

 Ryan Wardell, University of Central Florida, presented at the 2023 ASME Turbo Expo in 
Boston, Massachusetts: GT2023-103263, An Experimental Investigation of Heat Transfer for 
Supercritical Carbon Dioxide Cooling in a Staggered Pin Fin Array.

 John Richardson, University of Central Florida, presented at the 2023 ASME Turbo Expo in 
Boston, Massachusetts: GT2023-102544, Experimental & Computational Heat Transfer Study of 
sCO2 Single Jet Impingement.

 Jeff Moore, Southwest Research Institute, presented at the 2023 ASME Turbo Expo in Boston, 
Massachusetts: GT2023-103328, Development of a 300 MWe Utility Scale Oxy-Fuel sCO2 Turbine. 
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Questions?
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