High-Temperature Dry Gas Seal (HTDGS) Test Rig

University Turbine Systems Research (UTSR) Gas Turbine Industrial (GTI) Fellowship Program Contributions from: Elliot Moore

Background

• Objective:

- Test rig capable of testing Dry Gas Seals (DGS) at both high temperatures and pressures (700C, 250 bara)
- Need:
	- Higher temperature and pressure requirements in sCO2 turbines
	- Elimination of thermal management system \rightarrow Higher efficiency

HTDGS Test Rig

• Goal:

- DGS test at 700C and 250 bara
- Versatility with various seal testing
- General Layout:
	- High speed motor assembly:
		- Operating at 21 krpm and 250 kW
	- Spindle assembly:
		- Ground point, thermal management system
	- Test housing assembly:
		- Hirth coupling to accommodate various seal designs
		- Pressure management system
- Design Challenges:
	- Thermal growth management
	- Bearing Temperatures
	- Pressure management

End Cap Pressure Analysis

Problem:

- S chamber:
	- Normal Operation: ~1.52 bara
	- MAWP (Hi-Temp): ~2.5 bara
	- MAWP (Low-Temp): ~2.67 bara
- Rapid pressure increase due to high ΔP (B \rightarrow S)
- Unknown pressure build-up as pressure is relieved

Objective:

- Determine back pressure build-up upon tandem seal failure
- Develop successful pressure relieving strategy (Max Press. < MAWP)
	- Burst disk utilized on end cap

Normal Operation

SOUTHWEST RESEARCH INSTITUTE MACHINERY DEPARTMENT www.machinery.swri.org

 A'

MAWP-Hi

700C

250bara

700C

10.0bara

 $00C$

Adiabat

52bar

A Zone: · Max Temp:

Max Press:

• Max Temp:

• Max Press:

Max Press:

Max Press

S' Zone: • Temp:

B Zone:

S Zone: · Max Temp:

Objective: Model ruptured burst disk as *orifice* flow model and determine pressure in the S chamber and Cap Pressure Analysis – Transient Model

jective: Model ruptured burst disk as *orifice* flow model

determine pressure in the S chamber

stas Balance Governing Equations:

stas Balance Governing Equations:

stas Bala

Mass Balance Governing Equations:

 dM_{A+B} dM_S dM_S

Flow in:

 $\dot{m}_{in,ext}$: Constant CO₂ flow into system

Flow $A+B \rightarrow S$

Flow $S \rightarrow$ ambient

and determine pressure in the S chamber

Mass Balance Governing Equations:
 $\frac{dM_{A+B}}{dt} = \dot{m}_{in,ext} - \dot{m}_{B\rightarrow S}$ $\frac{dM_S}{dt} = \dot{m}_{B\rightarrow S} - \dot{m}_{out}$

Flow in:
 $\dot{m}_{in,ext}$: Constant CO₂ flow into system

Flow A+B \rightarrow S
 $\dot{$ $2\rho_S$; $(P_S - P_{atm})$, E_{louv} through orifice (burst disk) $\frac{r_{S}-r_{atm}}{1-\beta^{4}}$: Flow through orifice (burst disk)

End Cap Pressure Analysis – Modeling Tool

Pressure Analysis Excel Tool:

Franchise Charles Contained Vanapuble Contained Vanapuble Contained Vanapuble Contained Vanapuble (Pressure)

Analysis – Analysis – Analysis – Anal

Pressure Analysis Excel Tool: Fig. 2. Input parameters

-
- Easily and quickly work through different configurations (i.e. disk size, $A_{\text{A}_{\text{out}}}\equiv 1.26\epsilon+01 \text{ in}^2$ orifice Area and investigative quantity, input pressure, laby clearance, etc.)
	-
	-

End Cap Pressure Analysis – Initial Results

$Low-Test$

High S chamber pressures results in significant forces on End Cap

Limiting Factors:

-
-
-
-
- - custom design is required

pressure

failure

End Cap Pressure Analysis — Revised Results

Thus for, model assumes tandem seal failure \therefore high pressure region rapidly builds pressure in S $\frac{\dot{m}_{B\rightarrow PSV}}{\text{the case flow}}$ Incorporate *Incorporate Cap* Pressure Analysis — Revised Reformation and the pressure region rapidly builds pressure in S

Incorporate PSV pressure relief from B chamber (nominally 10 bara)

- After primary seal failure (Cap Pressure Analysis — Revised Result
 del assumes tandem seal failure : high pressure region rapidly builds pressure in S constant mass

into the system

mg PSV into Chamber B:

- After primary seal failure (A-B), B ch Cap Pressure Analysis — Revised Result
 Mel assumes tandem seal failure :: high pressure region rapidly builds pressure in S constant mann

Into the system of the s

Thus far, model assumes tandem seal failure ∴ high pressure region rapidly builds pressure in S constant mass chamber

Implementing PSV into Chamber B:

- -
	-

Incorporation into model:

-
-

PSV reduces force on end cap and increases control in pressure relief system

Future Work Recommendations:

- Implement PSV into test rig P&ID
- Determine and incorporate factor of safety into PSV actuation pressure

Conclusions

- Developed modeling tool for more in depth pressure behavior upon seal failure
	- Allowed more informed pressure mitigation strategy
- Successfully prepared test rig for hydrotesting
	- Parts quoted for machining
	- Next steps: Hydrotest the seal housing
- Progressed the project into preparation to testing phase
	- Challenges faced in motor spinning, and project management prevented testing being conducted during fellowship timeline
	- Next steps: final assembly of test rig

Thank You

Questions

