High-Temperature Dry Gas Seal (HTDGS) Test Rig

University Turbine Systems Research (UTSR) Gas Turbine Industrial (GTI) Fellowship Program Contributions from: Elliot Moore

Background

• Objective:

- Test rig capable of testing Dry Gas Seals (DGS) at both high temperatures and pressures (700C, 250 bara)
- Need:
 - Higher temperature and pressure requirements in sCO2 turbines
 - — Elimination of thermal management system → Higher efficiency

HTDGS Test Rig

• Goal:

- DGS test at 700C and 250 bara
- Versatility with various seal testing
- General Layout:
 - High speed motor assembly:
 - Operating at 21 krpm and 250 kW
 - Spindle assembly:
 - Ground point, thermal management system
 - Test housing assembly:
 - Hirth coupling to accommodate various seal designs
 - Pressure management system
- Design Challenges:
 - Thermal growth management
 - Bearing Temperatures
 - Pressure management

End Cap Pressure Analysis

Problem:

- S chamber:
 - Normal Operation: ~1.52 bara
 - MAWP (Hi-Temp): ~2.5 bara
 - MAWP (Low-Temp): ~2.67 bara
- Rapid pressure increase due to high ΔP (B \rightarrow S)
- Unknown pressure build-up as pressure is relieved

Objective:

- Determine back pressure build-up upon tandem seal failure
- Develop successful pressure relieving strategy (Max Press. < MAWP)
 - Burst disk utilized on end cap

Normal Operation

End Cap Pressure Analysis – Transient Model

Objective: Model ruptured burst disk as *orifice* flow model and determine pressure in the S chamber

Mass Balance Governing Equations:

 $\frac{dM_{A+B}}{dt} = \dot{m}_{in,ext} - \dot{m}_{B\to S} \qquad \frac{dM_S}{dt} = \dot{m}_{B\to S} - \dot{m}_{out}$

Flow in:

 $\dot{m}_{in,ext}$: Constant CO₂ flow into system

Flow $A+B \rightarrow S$

 $\dot{m}_{B \to S} = \rho_{A+B} \cdot v_{SoS} \cdot A_{laby}$: Choked flow through laby annulus

Flow S \rightarrow ambient

 $\dot{m}_{out} = C_d \cdot \varepsilon \cdot A_{orif} \sqrt{\frac{2\rho_S \cdot (P_S - P_{atm})}{1 - \beta^4}}$: Flow through orifice (burst disk)

End Cap Pressure Analysis – Modeling Tool

Pressure Analysis Excel Tool:

- Input/ determined via 'Goal Seek'

	A	mbien		A+B to S Chamber Initial Conditions				
Description	0	0	Notes	Parameters	Values	Units	Notes	
т	700.0	С	Isothermic Temp	P1	20.0	bara	A+B Cavity Pressure	
P ₃	1.000	bara	Ambient Pressure		2.00E+03	kPa		
	100.000	kPa			2.00E+06	Ра		
		-		v1	468.70	m/s	Speed of sound (choke flow)	
	1.00E+05	Ра		V1	0.00218	m3	Volume of A+B Chamber/ CAD	
			· · ·	area1	5.75E-04	m²	Laby annulus	
	ons of S Chamber	Z ₁₀	1.0039	-	Initial Comp. Factor/ REFPROP			
Parameters	Values	Units	Notes	Min,ext	0.1159	kg/s	Const./ mass flow into system	
C _d	0.600	-	Burst Disk Cd estimation		0.023614			
ρ _{2,0}	1.162	kg/m³	S Chamber initial density	M	7	kg	Initial mass	
d2	9.9213	in	Upstream diameter					
β	0.403	-	Chamber/Orifice diam. ratio	Laby Seal				
γ	1.182	-	Ratio of specific heats		39.37	mils	Calc	
x	0.532	-	ΔP over upstream pressure	Laby Clearance	1	mm		
Y	0.355	-	Constant	,	1.00E-03	m		
ε	0.811	-	Expansion Factor				HDGS1130-TA1-U-Final (EB Seal	
(kJ/kg),		(kJ/kg),	1	Laby D(ID)	182	mm	Drawing)	
R	0.189	к	Gas Constant/ REFPROP		1.82E-01	m		
V2	0.00362	m3	Volume of S Chamber				HDGS1130-TA1-U-Final (EB Seal	
т	700.0	С	Isothermic Temp	Laby D(OD)	184	mm	Drawing)	
	973.15	К		, , , ,	1.84E-01	m		
				Burst Disk				
P _{2,0}	2.137	bara	Initial Pressure at burst (max burst)		4.000	in	burst disk diam - (full rupture)	
	213.7	kPa		d3	1.02E-01	m	()	
	2 146±05	Pa		Nd	1.00E+00			
7	1 000	гd	Comprossibility Easter/ REERBOR	A	1 26E+01	in²	Orifice Area	
<u>∠_{2,0}</u>	1.000	-	compressionity ractor/ REPPROP	· ·orif	8 11F-03	 m ²		
Initial Mass	0.004203	kg	Calc		5.112 05			
IIIItidi IVIdSS	0.004203	ĸg	Call	1				

Tool Uses:

- Transient pressure relief characteristics
- Easily and quickly work through different configurations (i.e. disk size, quantity, input pressure, laby clearance, etc.)
- Allows for more informed decision on pressure management
- Configured for versatile use cases with similar assumptions

End Cap Pressure Analysis – Initial Results

Burst Disk Diameter: 6 in						
Test	Parameter	Value	Unit			
	A+B Operating Pressure	82	bara			
Low-Test	S Operating Pressure	1.52	bara			
Point [500C]	S Burst Pressure	1.747	bara			
	Max S Pressure	4.174	bara			
	A+B Operating Pressure	250	bara	Г		
Hi-Test	S Operating Pressure	1.52	bara			
Point [700C]	S Burst Pressure	1.747	bara			
	Max S Pressure	12.065	bara			

High S chamber pressures results in significant forces on End Cap

Limiting Factors:

- Large laby seal clearance (40 mils) ightarrow high mass flow to S chamber
- High pressure ratio A+B \rightarrow S
- Burst Disk diameter restriction

- End cap re-design to accommodate increased load

Hi-Test

- Incorporate larger burst disk [> 6in]
 - Cons: Increasingly expensive as diameter increases; even more if custom design is required

Incorporate PSV pressure relief before S chamber reaches maximum pressure

 Add PSV to relieve pressure in B chamber before secondary seal failure

SOUTHWEST RESEARCH INSTITUTE MACHINERY DEPARTMENT www.machinery.swri.org

Low-Test

4.500

S Chamber [Pressure]

End Cap Pressure Analysis – Revised Results

Thus far, model assumes tandem seal failure ∴ high pressure region rapidly builds pressure in S chamber

Implementing PSV into Chamber B:

- Incorporate PSV pressure relief from B chamber (nominally 10 bara)
 - After primary seal failure ($A \rightarrow B$), B chamber will build pressure above 10 bara.
 - PSV engages and relieves pressure before secondary failure

Incorporation into model:

- PSV set at specified pressure (estimate 20 bara for model purposes)
- Assume PSV sustains specified pressure in chamber B as pressure is relieved

	Burst Disk Diameter:				
Test	Parameter	Value	Unit		*Note: 4 in burst disk
	A+B Seal Failure Pressure	20	bara		modeled in analysis rather than 6 in
Low-Test Point	S Operating Pressure	1.52	bara		
[500C]	S Burst Pressure	2.137	bara		
	Max S Pressure	2.485	bara		
	A+B Seal Failure Pressure	20	bara		
Hi-Test	S Operating Pressure	1.52	bara		
Point [700C]	S Burst Pressure	2.137*	bara		
	Max S Pressure	2.487	bara		

PSV reduces force on end cap and increases control in pressure relief system

Future Work Recommendations:

- Implement PSV into test rig P&ID
- Determine and incorporate factor of safety into PSV actuation pressure

Conclusions

- Developed modeling tool for more in depth pressure behavior upon seal failure
 - Allowed more informed pressure mitigation strategy
- Successfully prepared test rig for hydrotesting
 - Parts quoted for machining
 - Next steps: Hydrotest the seal housing
- Progressed the project into preparation to testing phase
 - Challenges faced in motor spinning, and project management prevented testing being conducted during fellowship timeline
 - Next steps: final assembly of test rig

Thank You

Questions

