Development and Application of Multipoint Array Injection Concepts for Operation of Gas Turbines on Hydrogen Containing Fuels DE-FE0032073

> 2024 UTSR Workshop 24-25 September 2024 Tuscaloosa, Alabama

Katelyn Ballard and Matt Adams, Technical Monitors

Brandon Esquivias , Iker Gomez, Vincent McDonell, Ottman Ousti, Malcolm Overbaugh, Britney Tran 24 September 2024 mcdonell@UCICL.uci.edu

Outline

- Background
- Project objective(s)
- Technical approach
 - **Team**
 - Tasks
 - \circ Schedule
- Results
- Next Steps

2/32

• Decarbonization is important, but Air Quality is also vital

• Entitlement NOx can be attained on DLN commercial products

LDI Injectors can attain entitlement emissions for Jet-A

• Example: Collins Aerospace LDI concept

Collins Aerospace Proprietary Adiabatic Flame Temperature (Jet A) vs NOx Emissions 100 → S = 1.36d 10 1 0.1 1400 1600 1800 2000 2200 2400 Adiabatic Flame Temperature, K

NO_X (EI), (g NO₂ / kg fuel)

Data from: Dolan, B., Gomez, R., Zink, G., Pack, S., Gutmark, E., (2016). Effect of Nozzle Spacing on Nitrogen-Oxide Emissions and Lean Operability, AIAA Journal, Vol. 54(6), pp 1953-1961.

Industrial Engine Entitlement

- Reactivity: H₂ vs CH₄ vs Jet-A
 - Flashback a risk for
 - H₂ (and Jet-A)
 - ✓ Short chemical time
 - ✓ High relative flame speed (e.g., laminar at phi ~ 0.7)
 - CH4: X
 - Jet-A: 4X
 - H2: 10X
 - \checkmark Pressure exacerbates the issue
 - $-~\tau_{\text{chem}}$ reaches minimum ~10 bar
 - Autoignition a major risk for Jet-A
 - ✓ Avoid premixing!
- LDI concepts have been successful for difficult

operability cases and able to attain low emissions

Pressure (bar)

Fig. 7: Chemical time scale (α/s_L^2) and autoignition time for different fuels. CH₄ and H₂ data generated from GRI-Mech 3.0 [18]. Jet-A data generated from HyChem A2 mechanism [19, 20].

Lieuwen, et al. (2024). Roles for combustion and combustion R&D in a decarbonized world, Proceedings, 40th Symposium (International) on Combustion.

Outline

- Background
- Project objective(s)
- Technical approach
 - **Team**
 - Tasks
 - \circ Schedule
- Results
- Next Steps

8/32

Objectives

- The proposed work will
 - 1) <u>adapt</u> advanced LDI *liquid fuel injectors* designed by Collins Aerospace for Jet-A fueled aero engines to accommodate injection of hydrogen/hydrogen natural gas blends and <u>screen</u>
 - 2) <u>demonstrate</u> their operation using experiments from laboratory scale model combustor configurations at elevated pressures and temperatures UC Irvine, and
 - 3) develop a <u>design</u> for test hardware that can be demonstrated at engine conditions in a test rig demonstration at Solar Turbines

Outline

- Background
- Project objective(s)
- Technical approach
 - **Team**
 - Tasks
 - \circ Schedule
- Results/Conclusions
- Next Steps

10/32

Tasks and Schedule

Project Timeline 12/10/21 6/10/22 12/10/22 3/10/23 6/10/23 12/10/23 3/10/24 6//10/24 9/10/24 9/10/21 3/10/22 9/10/22 9/10/23 Task 12/10/24 1--Project Management 2—Test Plan Development (All) 3—Hardware -> Development (CA) 4--Simulation Support (CA/UCI) 5—UCI 1 atm * Tests (UCI) 6-UCI 10 atm Tests (UCI) 7-UCI Array Test → └▶ 8—Design for Solar Test Rig (CA/Solar) 9—Reporting * * × × × * * * * * * * * * (UCI/All)

--Quarterly Reports

--Final Report

DOE: \$800,000 Cost Share: \$200,000

Milestones

--Test Plan Report

--UCI Test Report—1 atm

--UCI Test Report—10 atm

--Solar Design Report—Included in Final Report

Extension to March 9 2025 executed

Workflow and Team

Technical Approach – CFD and Manufacturing

- Design of Experiments to establish the geometry variations
- Computational Fluid Dynamics to size air and fuel circuits
 - Effective area targets: 0.145in² air, 0.0055in² fuel \rightarrow expected 5-15% decrease for rough surface finish
- Additive manufacturing: Inconel 625

Injectors

- Individuals
 - 13 for pure B-B design
 - $_{\circ}$ $\,$ 3 for correlation validation $\,$
- Downselect for Array

Outline

- Background
- **Project objective(s)**
- Technical approach
 - o **Team**
 - Tasks
 - Schedule
- Results
- Next Steps

15/32

Previous Observations

• GT2023-101577 and GT2023-102632

- 770 test points obtained •
- Successful adaptation of LDI injectors from liquid to H2 and H2/NG Blends
- Highly consistent effective areas
 - Additive manufacturing (surface roughness)
- Fuel flexible: 100% NG
 ↔ 100% H2

- Stability (↓ LBO) is enhanced by...
 - ∘ **↑ H2**
 - ↓ air split
 - ↓ air swirl
- NOx is decreased with...
 - ↑ air split
 - ↑ air swirl
 - ↓ preheat/AFT
- Correlation between NOx and OH* average brightness

Config.	Air Split	Air Swirl Angle	Fuel Swirl Angle
2	-1	1	0
7	1	1	0

ANOVA Response Surface Indicated "Direction" for Improved Configuration

- Further design refinement based on original ANOVA
 - Led to development and fabrication of configurations 17-21
 - New atmospheric tests carried out with new configurations
 - ✓ Effective area validation
 - ✓ Emissions performance (using same range of parameters as before)
 - preheat temperatures,
 - %hydrogen,
 - % pressure drop,
 - AFTs
 - ✓ Repeated some configurations to confirm prior results (9 months prior)

17/32

Atmospheric Effective Areas and Emissions

- Effective Areas and Emissions of repeated nozzles match previous studies
- C17 did achieve improved NOx performance as predicted

Injector Configuration	Avg. NOx (ppmvd-FO15)
2 (INJ 2, Plate 3)	11.26*
3 (INJ 3, Plate 2)	10.68
7 (INJ 7, Plate 1)	2.13
17 (INJ 17, Plate 1)	1.72
18 (INJ 18, Plate 1)	2.07
19 (INJ 18, Plate 3)	2.37
20 (INJ 19, Plate 3)	2.90
21 (INJ 20, Plate 3)	2.22

Atmospheric Emissions - NOx Model Comparison

C3 Model

 $\begin{bmatrix} NO_x \end{bmatrix}$

- = 0.723703 + 0.005066 * A 725268 * B
- + 0.085448 * *C*
- Minimal correlation to AFT
- Strong linear dependence on fuel type
- **o** Inverse linear correlation to pressure drop

Parameter	F-Value	P -Value
A – AFT (K)	1.80	0.1926
B – % PD	2.81	0.1071
C - % H2	24.40	<0.0001

Atmospheric Emissions - NOx Model Comparison

• C17 Model

 $\sqrt{[NO_x]}$ = 10.70026 - 0.014636 * A + 0.116038 * + 0.001109 * C + 5.19701 * 10⁻⁶ * A² - 0.01421 * B²

- No Dependence on pressure drop or fuel type
- Exponential relationship with AFT

Parameter	F-Value	P -Value
$A/A^2 - AFT (K)$	1123.29	A: <0.0001
	(1050.03/73.26)	A ² : <0.0001
$B/B^2 - \% PD$	2.9389	B: 0.8456
	(0.0389/2.90)	B ² : 0.1040
C – % H2	5	C: 0.0368

© UCI Combustion Laboratory 2024

Elevated Pressure Testing

or

e

C

- NOx does not followrt AFT
 HINDXColleapsed*t protoned press (Oh transform)
- Oh Transform indi

- NOx does follow logarithmic behavior wrt AFT @ 2-3 atm
- High Frequency Dynamics observed at 4-6 atm, non-logarithmic behavior
- HFD causes premixed \rightarrow non-premixed

Elevated Pressure Testing

- Shifted to Configuration 18
 - Modestly higher NOx (2.07) compared to Configuration 17 (1.72)
 - **•** Design should "push" the reaction farther from injector face
 - ✓ ~20% larger effective area

22/32

Configuration 18 results

- Larger effective area limits fuel flow
 - New H₂ flow meter now in house and testing to 7-8 atm underway
 - $_{\circ}$ $\,$ Consistent lifted reaction
 - ✓ Facilitates more premixing

Array Testing

- Configuration 7 used for initial array configuration
 - **o** Low NOx with robust operability (consistent flame mode)
 - Arrays with two injector spacings developed

Array Testing

• Updated airbox

• Array C7 – Version 1

Effective Area

- Compact C-7 array
 - Single C7 Injector: 0.154 sq inches
 - x 7 = 1.078 sq inches
- Results are as expected (single and array effective areas are within 3%)

% Pressure Drop	Flowrate (SCFM)	DP (inH2O)	Discharge Pressure (PSIG)	Exit Pressure (PSIA)	Mass Flow (lb/s)	T (F)	EA (in^2)	P1/10	P1-P2	Valid?
2.01%	87.844	8.368	14.998	14.696	0.110	70	1.084	40.719	8.368	У
2.22%	92.361	9.227	15.029	14.696	0.116	70	1.085	40.719	9.227	У
2.68%	102.327	11.222	15.101	14.696	0.128	70	1.087	40.719	11.222	У
2.93%	106.549	12.274	15.139	14.696	0.134	70	1.081	40.719	12.274	У
3.40%	115.502	14.325	15.213	14.696	0.145	70	1.082	40.719	14.325	У
4.47%	131.604	19.063	15.384	14.696	0.165	70	1.063	40.719	19.063	У
1.59%	75.809	6.567	14.933	14.696	0.095	70	1.059	40.719	6.567	У
2.44%	95.418	10.196	15.064	14.696	0.120	70	1.065	40.719	10.196	У
3.80%	120.648	16.098	15.277	14.696	0.151	70	1.064	40.719	16.098	У
5.00%	139.838	21.418	15.469	14.696	0.175	70	1.063	40.719	21.418	У

Initial Array Tests

Images and videos (natural gas)

Center Injector 400 F preheat $\phi = 0.98$ $\Delta P/P = 3\%$ All Injectors 400 F preheat $\phi = 0.81$ $\Delta P/P = 3\%$

27/32

Pilot LBO (Center Injector)

• Array—Significantly reduced stability

					Temp	erature					
	Air (PSI)	DP (PSIG)	Fuel %	Pilot (F)	Array (F)	Airbox (F)	Preheat (F)	PD (%)	Fuel (SCFM)	Air (SCFM)	LBO-phi
1	54	0.86	93	401	536	420.8	710	5%	1.46	99.6	1.02
2	41.47	0.52	67.5	428	473	377.6	600	4%	1.05	80.8	0.91
3	41.054	0.473	71.5	312.8	374	305.6	440	4%	1.11	80.2	0.97
4	32.54	0.382	53.5	392	460.4	366.8	600	3%	0.83	67.4	0.86
5	55.19	0.89	91	426.2	539.6	426.2	710	5%	1.42	101.3	0.98
6	41.12	0.53	67	397.4	298.4	383	600	4%	1.04	80.3	0.91
7	41.106	0.478	71.5	323.6	384.8	318.2	440	4%	1.11	80.3	0.97
8	32.029	0.376	51.5	401	464	370.4	600	3%	0.79	66.7	0.83

• Single Injector (for reference) 0.44-0.54 LBO

80 mm quartz tube

									Chann	el	
Run			Fuel Compoisition	Fuel Compositio	on			Channel Read	ing Readin	g	
Order	Pressure Drop %	Preheat Temp [F]	%H2	%Methane	В	Ilue PSI Reading - Expected	Blue PSI Reading - Measured	Methane %	H2 %	LB	O - Minimum Equivalence ratio
1	L 6		710	0	100	66.880	61.4	0 53	3.70 0.	00	0.5173156459
2	2 4		980	0	100	44.364	42.3	0 34	4.20 0.	00	0.4376648101
3	3 4		440	0	100	61.036	53.4	0 50	0.50 0.	00	0.5432630381
2	1 2		710	0	100	30.835	28.4	0 27	7.70 0.	00	0.4671173236

Array Test Matrix

- Fix pressure loss and inlet air preheat
- Vary
 - Bulk AFT (overall phi)/firing temp
 - Pilot/Main split (local temps)
 - NG, 50/50, H2
 - Local overall AFT (phi)
- 36 points for <u>each array</u>
 - Will add some repeats

STD	Preheat (K)	PD %	% H2	Pilot Temp (K)	Main Temp (K)	Global Temp (K)	
1	700	4	0	1500	1500	1500	
2	700	4	0	1440	1510	1500	
3	700	4	0	1560	1490	1500	
4	700	4	0	1620	1480	1500	
5	700	4	0	1700	1700	1700	
6	700	4	0	1640	1710	1700	
7	700	4	0	1760	1690	1700	
8	700	4	0	1820	1680	1700	
9	700	4	0	1900	1900	1900	
10	700	4	0	1840	1910	1900	
11	700	4	0	1960	1890	1900	
12	700	4	0	2020	1880	1900	
13	700	4	50	1500	1500	1500	
14	700	4	50	1440	1510	1500	
15	700	4	50	1560	1490	1500	
16	700	4	50	1620	1480	1500	
17	700	4	50	1700	1700	1700	
18	700	4	50	1640	1710	1700	
19	700	4	50	1760	1690	1700	
20	700	4	50	1820	1680	1700	
21	700	4	50	1900	1900	1900	
22	700	4	50	1840	1910	1900	
23	700	4	50	1960	1890	1900	
24	700	4	50	2020	1880	1900	
25	700	4	100	1500	1500	1500	
26	700	4	100	1440	1510	1500	
27	700	4	100	1560	1490	1500	
28	700	4	100	1620	1480	1500	
29	700	4	100	1700	1700	1700	
30	700	4	100	1640	1710	1700	
31	700	4	100	1760	1690	1700	
32	700	4	100	1820	1680	1700	
33	700	4	100	1900	1900	1900	
34	700	4	100	1840	1910	1900	
35	700	4	100	1960	1890	1900	
36	700	4	100	2020	1880	1900	

Outline

- Background
- **Project objective(s)**
- Technical approach
 - o **Team**
 - Tasks
 - Schedule
- Results
- Next Steps

Next Steps

- Finish up Config 18 (and 17) high pressure single injector testing
- Array testing (Config 7)
 - 36 point matrix: close coupled spacing
 - 36 point matrix: isolated spacing

✓ Emissions

- ✓ OH* chemiluminescence: 3D flame tomography
- Finalize design for Solar Turbines test rig
- Final Reporting

Acknowledgments

- Collins Aerospace
 - Ottavio DeBeni
 - Phil Buelow
 - ₀ Jason Ryon
 - Brandon Williams

• Solar Turbines

- Mike Ramotowski
- Raj Patel
- Jon Duckers

• US Department of Energy

o Matt Adams, Katelyn Ballard, John Crane

Vincent McDonell mcdonell@UCICL.uci.edu www.UCICL.uci.edu

Collins Aerospace

Solar Turbines

A Caterpillar Company

Adaptation of Aeroengine Micromixing Injectors for Lean Direct Injection of Hydrogen and Hydrogen/Natural Gas Blend (2023). **GT2023-101577** ASME TurboExpo 2023 (I. Escudero, B. Tran, M. Overbaugh, V. McDonell, B. Williams, P. Buelow, J. Ryon, O. De Beni)

Emissions and Flame Structure Assessment of Aeroengine Micromixing Injectors for Lean Direct Injection of Hydrogen and Hydrogen/Natural Gas Blends (2023). **GT2023-102632,** ASME TurboExpo 2023 (B. Tran, I. Escudero, V. McDonell

Design, Analysis, and Experimental Testing of Hydrogen Lean Direct Injection Nozzles at Elevated Pressure (2024). **GT2024-126814**, ASME TurboExpo 2024 (M. Overbaugh, V. McDonell, P. Buelow, J. Ryon, B. Williams, and O. DeBeni)

Predictive Modeling of NO Emissions from Lean Direct Injection of Hydrogen and Hydrogen/Natural Gas Blends using Flame Imaging and Machine Learning (2024). Int'l J. Turbomachinery Propulsion and Power (I. Escudero, V. McDonell), in press

Two conference papers (Combustion Institute US National meeting)

Two MS theses (third in progress)

One UTSR fellow (M. Overbaugh)

Additional papers planned

