

Next Generation Environmental Barrier Coatings

M. Ridley, M. J. Lance, T. Aguirre, B. Lamm, B. Pint Materials Science and Technology Division Oak Ridge National Laboratory Oak Ridge, TN, USA

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Field Work Proposal: FEAA300

ridleymj@ornl.gov

TGO Thickness

700 800 900 1000 1100 1200 1300 1400

 0.5

There is great interest in using ceramic matrix composites (CMCs) in combustion environments

- CMC components entered commercial aircraft service in 2016 (GE/Safran LEAP engine)
	- $\,$ 1/3 $^{\mathsf{rd}}$ the density of traditional superalloys
	- • Higher temperature stability of CMCs in combustion gases can allow for increased operating temperatures
- Interest in CMCs as hot section components for land-based turbines
	- In the future, Industrial Gas Turbines (IGT) will be fired using ${\sf H_2}$ which will be at even higher temperatures
- Enabling CMCs for combustion environments requires protective Environmental Barrier Coatings (EBCs)
	- Si bond coating oxidation is a major failure mode

www.siemens-energy.com

LOAK RIDGE Vational Laboratory

J Am Ceram Soc. 2023; 106: 613–620. https://doi.org/10.1111/jace.18769

LOAK RIDGE

FY24 Tasks

Task 1 (100%)

1.1: Compile industrial survey on the primary research obstacles for EBC/CMC systems in gas turbines, **Q2**

Task 2 (100%)

1.2: Submit a journal publication on the <u>measured SiO₂ crack</u> density during 100-h furnace cycle testing at 1350°C up to 1500h, **Q3**

Task 3 (100%)

• 2.1: Perform O^{18} (g) tracer diffusion experiments at 1300°C to measure oxidant diffusivity through EBCs to support EBC oxidation lifetime model, **Q4**

Task 4 (95%)

- 3.1: Submit a journal publication on utilization of Raman spectroscopy to measure layer stresses in an $EBC/SiO₂/Si/SiC$ system in crosssection upon heating through the $SiO₂$ phase transformation temperature, **Q4**
	- **Paper in review**

Output for Ceramic Coatings R&D Community: Publications

- 15 publications on EBCs since 2019
- >250 total citations
- 2024 Publications:
- 1. Aguirre T, Lin L, Ridley M, Kane K, Pint B. Finite Element Modeling of the Phase Change in Thermally-Grown SiO2 in SiC Systems for Gas Turbines. *JOM - Journal of the Minerals, Metals and Materials Society*. 2024. https://doi.org/10.1007/s11837-024-06507-4
- 2. Ridley, M., Kane, K. & Pint, B. Environmental barrier coatings on SiC without a silicon bond coating: oxidation resistance, failure modes, and future improvements. *J. Korean Ceram. Soc.* (2024). https://doi.org/10.1007/s43207-024-00386-w
- 3. Ridley MJ, Lance MJ, Aguirre TG, Kane KA, Pint BA. Understanding EBC Lifetimes and Performance for Industrial Gas Turbines. J. Eng. Gas Turbines Power. 2024. https://doi.org/10.1115/1.4066349

Output for Ceramic Coatings R&D Community: Conferences

• 2023

- –The Minerals, Metals & Materials Society
- 47th International Conference on Advanced Ceramics and Composites
- –49th International Conference on Metallurgical Coatings and Thin Films
- –Center for Thermal Spray Research Consortium
- –High Temperature Corrosion Gordon Research Conference
- –11th International Conference on High Temperature Ceramic Matrix Composites (session chair)

• 2024

- Composites, Materials & Structures Conference
- –Pacific Operational Science and Technology (POST)
- –50th International Conference on Metallurgical Coatings and Thin Films
- –Center for Thermal Spray Research Consortium
- ASME Turbomachinery Technical Conference & Exposition

Task 1: Industry EBC Panel

- Establish connections with industry
- Understand industry needs regarding EBC/CMC research
- Redirect ORNL EBC work scope to be most impactful
	- Emphasis on Industry Perspective*

10 Total Contributors

*** OAK RIDGE**

EBC Survey Outcomes *(Industry Perspective Only)*

Highest ranked interests from industry are:

- 1.Thermal cycle stability of EBCs
- 2.Bond coating oxidation
- 3.SiC/SiC mechanical/chemical stability

EBC Survey Outcomes *(Industry Perspective Only)*

Industry Statements (ORNL Active in These Areas)

- $\,$ Oxidation mechanisms & EBC lifetime modeling are top priority \bullet
- Low-temperature oxidation testing (<1200°C) •
- affects are ovidation receded for OFMs. •Thermal gradient testing needed to better simulate real world environment
- • $\text{\textdegree{}}$ $\text{\textdegree{}}$ $\text{\textdegree{}}$ and $\text{\textdegree{}}$ $\text{\textdegree{}}$ effects on oxidation needed for OEMs

1010

类Q

Oxidation kinetics can be visualized for simple lifetime prediction based on critical SiO2 thickness

- • 1350°C oxidation data used to extrapolate in *y-axis space*
- • Temperature dependence for Si oxidation used to extrapolate in *x-axis space*
- • **Model validates test data at 700, 1250, 1300°C (ex. 700°C, OEM interest)**

LOAK RIDGE

Task 2: SiO2 Cracking

- •• Cracking in the SiO₂ TGO promotes delamination/spallation of EBC
- •• Caused by SiO₂ phase transformation below 300°C upon thermal cycling
- •Crack density change as a function of exposure can inform EBC Lifetime Model

100-h Cycling of YbDS EBCs at 1350°C in 90% H₂O (g)

Ridley et. al, JACerS (2024) Submitted for Review

- 100-h cycle is more relevant to gas turbine duty cycle compared to typical aero 1-h cycle testing
- • Crack density decreased as a function of exposure time???
	- –– Crack healing mechanism likely SiO $_{\rm 2}$ creep

Task 3: Oxidant Diffusivities through EBCs

- Extremely limited data available on oxidant diffusivities
	- Lit. data focuses on dry air
- Diffusivity directly relates to oxidation rate
	- Needed for modeling efforts
- *Test 1: Furnace Injection*
	- Rapid, multiple samples tested at once (rapid consumption of tracer)
- *Test 2: Capsule (in progress)*
	- Controlled variables, improved quality, single specimen test

Dry air oxidant diffusivities *DBulk<1x10-11 cm2/s EBC requirement for steam*

Ridley et. al, JACerS Feature Review Article (2024).

Test 1: H_2 ¹⁸O Furnace Injection Test 2: H_2 ¹⁸O Capsule

lid

furnace

Test 1: H₂¹⁸O and H₂O/¹⁸O₂ exchanges to understand **diffusion pathways and diffusivities**

C-

•1300°C exchange, 2h

- Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) performed at **ORNL**
	- Mapping positive and negative ions
- • Capsule testing underway (Test 2)

Collaboration with visiting scientist, Juho Lehmusto, Åbo Akademi University, Finland

Yb2Si2O7/Yb2SiO5 EBC Furnace Testing, 90% H₂O / 10% ¹⁸O₂, ToF-SIMS maps Stony Brook University

EBCs from:

Center for Nanophase Materials Sciences (CNMS) proposal was awarded for use of ToF-SIMS at ORNL (FY24-FY25)

Decreased bulk diffusion in Y/Yb EBCs was measured

- • Initial results show decreased bulk 18O diffusion into (Y/Yb) EBC, in agreement with oxidation studies
	- Short circuit diffusion (controlled by microstructure/defects) similar for both EBC chemistries
- Capsule testing underway (Test 2)
	- \bullet Multiple exchange times/temperatures
	- \bullet FY25 Activity

Task 4: Raman stress analysis in EBCs *High-temperature mapping of phases*

- YbDS/YbMS Sample:
	- 90% H $_{\rm 2}$ O/10% air
	- 1350°C
	- 10 100-h cycles
- Raman performed up to 300°C
- \bullet Principle component analysis used for phase correlation

 \mathbb{S}^8

SIC

SiC ⁵⁰ µm **SiSiO₂ EBC: Yb2Si2O7/Yb2SiO5 (YbDS/YbMS)**

25°C Optical Image Raman Spectra

260°C Raman Spectra Map 270°C Raman Spectra Map Ridley et. al, JEGTP(2024)

17

EBCs from:

Stony Brook University

EBCs doped with Al-containing phases were studied

- CVD SiC substrates were coated by air plasma spray with silicon and a Yb $_2$ Si $_2$ O $_7$ EBC modified with and without 3.5 wt% mullite and 2 wt% YAG (**from NASA GRC**).
- All samples were annealed at 1300°C for 4 hours in air prior to exposure.
- Samples were heated in steam at 1350°C for 1-h cycles in a SiC vertical tube furnace.
- During each cycle, the samples were cooled in laboratory air for 10 minutes which ensured the SiO $_2$ underwent the β \leftrightarrow a phase transformation around 250°C.

BSE image of EBC after 500h in wet air at 1350°C

Yb2Si2O7 EBC + 3.5 mullite + 2 YAG EBC had a longer lifetime and slower TGO growth rate than the undoped Yb2Si2O7 EBC

- Doping the YbDS with mullite and YAG slowed the TGO growth rate.
	- Slower TGO growth rate may be due to lower porosity.
- The undoped EBC failed at 260 ± 53 h and was 11.8% porous.
- The doped EBC failed at 1000 h and was 7.5% porous.

LOAK RIDGE
National Laboratory

Photo-Stimulated Luminescence Spectroscopy (PSLS) was used to identify phases and measure stress within Al-containing oxides

- •A Raman Microprobe is used to acquire both Raman and PSLS spectra.
- \bullet The spot size is ~1 µm and acquisition time is <1 second.

Photo-Stimulated Luminescence Spectroscopy (PSLS) was used to identify phases and measure stress within Al-containing oxides

- \bullet A Raman Microprobe is used to acquire both Raman and PSLS spectra.
- •The spot size is \sim 1 µm and acquisition time is \leq 1 second.
- •Trace Cr³⁺ substitutes for AI and absorbs green laser light and emits 2 R(Red)-lines.
- YAG, mullite and a-Al₂O₃ luminesce at different wavelengths.

Photo-Stimulated Luminescence Spectroscopy (PSLS) was used to identify phases and measure stress within Al-containing oxides

- \bullet A Raman Microprobe is used to acquire both Raman and PSLS spectra.
- •The spot size is \sim 1 µm and acquisition time is \leq 1 second.
- •Trace Cr³⁺ substitutes for AI and absorbs green laser light and emits 2 R(Red)-lines.
- •• YAG, mullite and a-Al₂O₃ luminesce at different wavelengths.
- \bullet Both Raman and PSLS spectra shift linearly with stress.

 The stress shift and intensity of the R-lines are both much larger than that of the Raman YbDS peaks. •National Laboratory

PSLS peak shifts are statistically significant, not Raman

 \bullet The low EBC stiffness and cracking between the Si and the EBC prevents stresses from thermal cycling and the SiO $_2$ phase transformation from being detected.

PSLS peak shifts are statistically significant, not Raman

- • The low EBC stiffness and cracking between the Si and the EBC prevents stresses from thermal cycling and the SiO $_2$ phase transformation from being detected.
- • The decline in stress in the mullite with exposure time maybe caused by microcracking which reduces the CTE mismatch stress with the $Yb_2Si_2O_7$.

PSLS may be used as a stress sensor to predict remaining lifetime of Al-doped EBCs.
Let on KIDGE \bullet National Laboratory

Si peak position shifts from Raman Spectroscopy can be used to quantify critical scale thickness for EBC failure

- 1350°C, 90% H₂O (g) / 10% air
- •-4 cm⁻¹/GPa stress relationship
- Capturing the total residual compressive stress retained from exposure
	- Thermal, *phase change*, growth stress impacts on Si

Stress analysis of Si bond coating after steam thermal cycling: High Temperature Stress Measurements

- Elevated stress was measured only in the first few microns of the Si upon cooling
	- Positive wavenumber shift corresponds to compressive stress in Si from SiO $_{\rm 2}$ phase change
	- Stress does not extend past splat boundaries in Si bond coating

290°C Si Mapping

Summary

 $\bigotimes_{\mathrm{National\,Laboratory}}\hspace{-1em}\underbrace{\hspace{1em}\mathbf{OAK}}$