

Next Generation Environmental Barrier Coatings

M. Ridley, <u>M. J. Lance</u>, T. Aguirre, B. Lamm, B. Pint Materials Science and Technology Division Oak Ridge National Laboratory Oak Ridge, TN, USA

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Field Work Proposal: FEAA300

ridleymj@ornl.gov

TGO Thickness

0.5

There is great interest in using ceramic matrix composites (CMCs) in combustion environments

- CMC components entered commercial aircraft service in 2016 (GE/Safran LEAP engine)
 - 1/3rd the density of traditional superalloys
 - Higher temperature stability of CMCs in combustion gases can allow for increased operating temperatures
- Interest in CMCs as hot section components for land-based turbines
 - In the future, Industrial Gas Turbines (IGT) will be fired using H₂ which will be at even higher temperatures
- Enabling CMCs for combustion environments requires protective Environmental Barrier Coatings (EBCs)
 - Si bond coating oxidation is a major failure mode

www.siemens-energy.com

CAK RIDGE

CAK RIDGE

FY24 Tasks

Task 1 (100%)

1.1: Compile industrial survey on the primary research obstacles for EBC/CMC systems in gas turbines, Q2

Task 2 (100%)

1.2: Submit a journal publication on the measured SiO₂ crack density during^{-100-h} furnace cycle testing at 1350°C up to 1500h, Q3

Task 3 (100%)

 2.1: Perform O¹⁸ (g) tracer diffusion experiments at 1300°C to measure oxidant diffusivity through EBCs to support EBC oxidation lifetime model, Q4

Task 4 (95%)

- 3.1: Submit a journal publication on utilization of Raman spectroscopy to measure layer stresses in an EBC/SiO₂/Si/SiC system in crosssection upon heating through the SiO_2 phase transformation temperature, Q4
 - Paper in review

Output for Ceramic Coatings R&D Community: Publications

- 15 publications on EBCs since 2019
- >250 total citations
- 2024 Publications:
- Aguirre T, Lin L, Ridley M, Kane K, Pint B. Finite Element Modeling of the Phase Change in Thermally-Grown SiO2 in SiC Systems for Gas Turbines. JOM - Journal of the Minerals, Metals and Materials Society. 2024. <u>https://doi.org/10.1007/s11837-024-06507-4</u>
- 2. Ridley, M., Kane, K. & Pint, B. Environmental barrier coatings on SiC without a silicon bond coating: oxidation resistance, failure modes, and future improvements. *J. Korean Ceram. Soc.* (2024). <u>https://doi.org/10.1007/s43207-024-00386-w</u>
- 3. Ridley MJ, Lance MJ, Aguirre TG, Kane KA, Pint BA. Understanding EBC Lifetimes and Performance for Industrial Gas Turbines. J. Eng. Gas Turbines Power. 2024. <u>https://doi.org/10.1115/1.4066349</u>

Output for Ceramic Coatings R&D Community: Conferences

• 2023

- The Minerals, Metals & Materials Society
- 47th International Conference on Advanced Ceramics and Composites
- 49th International Conference on Metallurgical Coatings and Thin Films
- Center for Thermal Spray Research Consortium
- High Temperature Corrosion Gordon Research Conference
- 11th International Conference on High Temperature Ceramic Matrix Composites (session chair)

• 2024

- Composites, Materials & Structures Conference
- Pacific Operational Science and Technology (POST)
- 50th International Conference on Metallurgical Coatings and Thin Films
- Center for Thermal Spray Research Consortium
- ASME Turbomachinery Technical Conference & Exposition

Task 1: Industry EBC Panel

- Establish connections with industry
- Understand industry needs regarding EBC/CMC research
- Redirect ORNL EBC work scope to be most impactful
 - Emphasis on Industry Perspective*

Industry	R&D		
General Electric Aerospace	UES Inc., AFRL		
General Electric Global Research	ORNL (x2)		
Siemens Corporation (R&D stage)	Stony Brook University (x2)		
Rolls-Royce			
Oerlikon Metco (Supplier)			

10 Total Contributors

CAK RIDGE

EBC Survey Outcomes (Industry Perspective Only)

Highest ranked interests from industry are:

- 1. Thermal cycle stability of EBCs
- 2. Bond coating oxidation
- 3. SiC/SiC mechanical/chemical stability

EBC Survey Outcomes (Industry Perspective Only)

Industry Statements (ORNL Active in These Areas)

- Oxidation mechanisms & EBC lifetime modeling are top priority
- Low-temperature oxidation testing (<1200°C)
- Thermal gradient testing needed to better simulate real world environment
- P_{Total} and P_{H2O} effects on oxidation needed for OEMs

10

≵O

Oxidation kinetics can be visualized for simple lifetime prediction based on critical SiO₂ thickness

- 1350°C oxidation data used to extrapolate in y-axis space
- Temperature dependence for Si oxidation used to extrapolate in x-axis space
- Model validates test data at 700, 1250, 1300°C (ex. 700°C, <u>OEM interest</u>)

Task 2: SiO₂ Cracking

- Cracking in the SiO₂ TGO promotes delamination/spallation of EBC
- Caused by SiO₂ phase transformation below 300°C upon thermal cycling
- Crack density change as a function of exposure can inform EBC Lifetime Model

100-h Cycling of YbDS EBCs at 1350°C in 90% $H_2O(g)$

Ridley et. al, JACerS (2024) Submitted for Review

- 100-h cycle is more relevant to gas turbine duty cycle compared to typical aero 1-h cycle testing
- Crack density decreased as a function of exposure time???
 - Crack healing mechanism likely SiO₂ creep

Exposure Time (h)	Number of channel cracks measured	Cracks/ mm
100	139	188
300	121	110
500	215	179
700	152	109
1000	238	85

Task 3: Oxidant Diffusivities through EBCs

- Extremely limited data available on oxidant diffusivities
 - Lit. data focuses on dry air
- Diffusivity directly relates to oxidation rate
 - Needed for modeling efforts
- Test 1: Furnace Injection
 - Rapid, multiple samples tested at once (rapid consumption of tracer)
- Test 2: Capsule (in progress)
 - Controlled variables, improved quality, single specimen test

Dry air oxidant diffusivities $D_{Bulk} < 1 \times 10^{-11} \text{ cm}^2/\text{s EBC requirement for steam}$

Thermo-chemical	SiO ₂	Yb ₂ O ₃	Yb ₂ SiO ₅	Yb ₂ Si ₂ O ₇
O ₂ (g) Self diffusion D _{Bulk} in EBC, 1400 °C, cm ² /s	2.3x10 ⁻¹⁰	8.0x10 ⁻¹²	8.3x10 ⁻¹⁴	1.3x10 ⁻¹⁴

Ridley et. al, JACerS Feature Review Article (2024).

Test 1: H₂¹⁸O Furnace Injection

lid

furnace

Test 2: H₂¹⁸O Capsule

Test 1: $H_2^{18}O$ and $H_2O/^{18}O_2$ exchanges to understand diffusion pathways and diffusivities

Si+

• 1300°C exchange, 2h

- Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) performed at ORNL
 - Mapping positive and negative ions
- Capsule testing underway (Test 2)

Collaboration with visiting scientist, Juho Lehmusto, Åbo Akademi University, Finland Stony Brook University Yb₂Si₂O₇/Yb₂SiO₅ EBC Furnace Testing, 90% H₂O / 10% ¹⁸O₂, ToF-SIMS maps

EBCs from:

Center for Nanophase Materials Sciences (CNMS) proposal was awarded for use of ToF-SIMS at ORNL (FY24-FY25)

Resin

Decreased bulk diffusion in Y/Yb EBCs was measured

- Initial results show decreased bulk ¹⁸O diffusion into (Y/Yb) EBC, in agreement with oxidation studies
 - Short circuit diffusion (controlled by microstructure/defects) similar for both EBC chemistries
- Capsule testing underway (Test 2)
 - Multiple exchange times/temperatures
 - FY25 Activity

CAK RIDGE

Task 4: Raman stress analysis in EBCs High-temperature mapping of phases

- YbDS/YbMS Sample:
 - 90% H₂O/10% air
 - 1350°C
 - 10 100-h cycles
- Raman performed up to 300°C
- Principle component analysis used for phase correlation

EBC: Yb₂Si₂O₇/Yb₂SiO₅ (YbDS/YbMS) SiO₂ Si SiC

25°C Optical Image

Raman Spectra

Ridley et. al, **JEGTP**(2024)

260°C Raman Spectra Map

270°C Raman Spectra Map

EBCs from: Stony Brook University **CAK RIDGE** National Laboratory

EBCs doped with Al-containing phases were studied

- CVD SiC substrates were coated by air plasma spray with silicon and a Yb₂Si₂O₇ EBC modified with and without 3.5 wt% mullite and 2 wt% YAG (from NASA GRC).
- All samples were annealed at 1300°C for 4 hours in air prior to exposure.
- Samples were heated in steam at 1350°C for 1-h cycles in a SiC vertical tube furnace.
- During each cycle, the samples were cooled in laboratory air for 10 minutes which ensured the SiO₂ underwent the β↔a phase transformation around 250°C.

BSE image of EBC after 500h in wet air at 1350°C

CAK RIDGE

Yb2Si2O7 EBC + 3.5 mullite + 2 YAG EBC had a longer lifetime and slower TGO growth rate than the undoped Yb2Si2O7 EBC

- Doping the YbDS with mullite and YAG slowed the TGO growth rate.
 - Slower TGO growth rate may be due to lower porosity.
- The undoped EBC failed at 260 ± 53 h and was 11.8% porous.
- The doped EBC failed at 1000 h and was 7.5% porous.

CAK RIDGE

Photo-Stimulated Luminescence Spectroscopy (PSLS) was used to identify phases and measure stress within Al-containing oxides

- A Raman Microprobe is used to acquire both Raman and PSLS spectra.
- The spot size is $\sim 1 \ \mu m$ and acquisition time is $< 1 \ second$.

Photo-Stimulated Luminescence Spectroscopy (PSLS) was used to identify phases and measure stress within Al-containing oxides

- A Raman Microprobe is used to acquire both Raman and PSLS spectra.
- The spot size is $\sim 1 \ \mu m$ and acquisition time is < 1 second.
- Trace Cr³⁺ substitutes for AI and absorbs green laser light and emits 2 R(Red)-lines.
- YAG, mullite and $a-Al_2O_3$ luminesce at different wavelengths.

Photo-Stimulated Luminescence Spectroscopy (PSLS) was used to identify phases and measure stress within Al-containing oxides

- A Raman Microprobe is used to acquire both Raman and PSLS spectra.
- The spot size is ~1 μ m and acquisition time is <1 second.
- Trace Cr³⁺ substitutes for AI and absorbs green laser light and emits 2 R(Red)-lines.
- YAG, mullite and a-Al₂O₃ luminesce at different wavelengths.
- Both Raman and PSLS spectra shift linearly with stress.
- The stress shift and intensity of the R-lines are both much larger than that of the Raman YbDS peaks.

PSLS peak shifts are statistically significant, not Raman

• The low EBC stiffness and cracking between the Si and the EBC prevents stresses from thermal cycling and the SiO₂ phase transformation from being detected.

PSLS peak shifts are statistically significant, not Raman

- The low EBC stiffness and cracking between the Si and the EBC prevents stresses from thermal cycling and the SiO₂ phase transformation from being detected.
- The decline in stress in the mullite with exposure time maybe caused by microcracking which reduces the CTE mismatch stress with the $Yb_2Si_2O_7$.

 PSLS may be used as a stress sensor to predict remaining lifetime of Al-doped EBCs.
 CAK RIDGE National Laboratory

Si peak position shifts from Raman Spectroscopy can be used to quantify critical scale thickness for EBC failure

- 1350°C, 90% H₂O (g) / 10% air
- -4 cm⁻¹/GPa stress relationship
- Capturing the total residual compressive stress retained from exposure
 - Thermal, phase change, growth stress impacts on Si

Stress analysis of Si bond coating after steam thermal cycling: High Temperature Stress Measurements

- Elevated stress was measured only in the first few microns of the Si upon cooling
 - Positive wavenumber shift corresponds to compressive stress in Si from SiO₂ phase change
 - Stress does not extend past splat boundaries in Si bond coating

290°C Si Mapping

	Industrial Survey	SiO ₂ crack density	¹⁸ O ₂ tracer diffusion	Raman stress in EBC
	 Oxidation mechanisms & EBC lifetime modeling 	 Crack density decreased with 100 h cycles at 1350°C. 	• Decreased bulk ¹⁸ O ₂ diffusion into EBC, in agreement with oxidation studies	 SiO₂ transformation stress results in compressive stress in the Si adjacent to the
	2. Low-temperature oxidation testing		¹⁸ O-	TGO. <u>290°C</u>
	 Thermal gradient testing needed Pressure effects on oxidation needed 		50 μm	
			Si	
		7 0 200 400 600 800 1000 Exposure Time (h)		<u>200°C</u>
	Tha Any c	nk you! Juestions?	EBC	

Mackenzie Ridley, ridleymj@ornl.gov

CAK RIDGE

Summary