

Advanced Mixed Mode Combustor for Hydrogen F-Class Retrofit

Principal Investigator - Michael Hughes

NETL Program Monitor - Mark Freeman

Gas Power | DoE UTSR Workshop 2024

This material is based upon work supported by the US Department of Energy under Award Number DE-FE00032173.

© 2023-2024, GE Vernova and/or its affiliates. All rights reserved. GE and the GE Monogram are trademarks of General Electric Company used under trademark license

© 2023-2024 GE Vernova and/or its affiliates. Proprietary Information - This document contains GE Vernova proprietary information. It is the property of GE Vernova and shall not be used, disclosed to others or reproduced without the express written consent of GE Vernova, including, but without limitation, in the creation, manufacture, development, or derivation of any repairs, modifications, spare parts, or configuration changes or to obtain government or regulatory approval to do so, if consent is given for reproduction in whole or in part, this notice and the notice set forth on each page of this document shall appear in any such reproduction in whole or in part. The information contained in this document may also be controlled by the US export control laws. Unauthorized export or re-export is prohibited. This presentation and the information herein are provided for information purposes only and are subject to change without notice. NO REPRESENTATION OR WARRANTY IS MADE OR IMPLIED AS TO ITS COMPLETENESS, ACCURACY, OR FITNESS FOR ANY PARTICULAR PURPOSE. All relative statements are with respect to GE Vernova technology unless otherwise noted.

Program Goals

Target Engine:

GE Gas Power proposes a combustor module that can be retrofitted to an existing F-class gas turbine, capable of running at current F-class performance and emissions on high hydrogen content fuels. For this proposal, the fleet of over 900 7Fs is the target. Specifically, the 7F.03 version is assumed to be the performance base-line.

Performance Targets:

- Maintain Simple Cycle heat rate on hydrogen fuel equal to or better than current product running on Natural Gas.
- Produce less than 25ppm NOx while operating on 100% Hydrogen, with a stretch goal of 9ppm. O₂ & H₂O impacts to be removed.
- Turn down to < 20% gas turbine load while operating on Natural Gas.
- Run with 100% hydrogen, 100% natural gas, and set mixtures of both.

	Starting	Current	Projected
Technology Readiness Levels	<u>Status</u>	<u>Status</u>	Ending Status
Technology Element 1 - Hydrogen-capable Axial Fuel Staging Injector, H2AFS	TRL4	TRL5	TRL6
Technology Element 2 - Hydrogen-capable Axial Fuel Stage, consisting of multiple H2AFS injectors	TRL4	TRL4	TRL6
Technology Element 3 – Advanced Mixed Mode Hydrogen Retrofit Combustor (implements Mixed-Modes)	TRL4	TRL4	TRL6

3

How Do We Engineer Combustors for Hydrogen?

Main Focal Areas:

- Robustness: Flame Holding & Flash Back
- NO_X Emissions
- Pressure Drop
- .
- Operability, NG to 100% H₂
- H₂ Embrittlement, HEE

Key elements of High H₂
premixed systems:
1. Micro Mixer
2. Axial Fuel Staging

Premixers:

General guidance, for Micro Mixers or otherwise

- High velocities... in the right direction
- Clean flow path. Avoid steps/gaps.
- Restrict time in the premixer

Axial Fuel Staging:

- Lowers system NOx Position injectors close to the exit, with a large fraction of the air & fuel.
- Spreads out heat release. dynamics benefits
- Staging options give part-load flexibility

Dynamics:

- Use of 3D acoustic finite element models
- Flame Transfer Functions (FTFs)
- Engineered air & fuel side impedances
- Dampers

To be developed / demonstrated under this program

The proposed technology builds upon GE Gas Power's proven Micro Mixer and Axial Fuel Staging technologies, yet is distinguished by:

- AFS injectors (H2AFS) for high hydrogen fuels
- Cool-Hot (Mixed Mode) operating mode for high hydrogen fuels

UTSR Workshop 2024, Tuscaloosa, AL

5

GE Vernova and/or its affiliates. All rights reserved. Monogram are trademarks of General Electric Company used under trademark license

Program Tasks

	Task 1	Project Management
	1.1	Project Management Plan
ĺ	1.2	Technology Maturation Plan
	Task 2	Gen I Combustor Engineering
	2.1	Define Preliminary Test Plans
	2.2	Gen I Hydrogen Injector Engineering and Fabrication
	2.3	Gen I Subscale Hydrogen Injector Testing
	2.4	Gen I Mixed Mode Combustor Engineering and Fabrication
	2.5	Gen I Hydrogen Fuel Supply Engineering and Fabrication
	2.6	Hydrogen Embrittlement Study
	Task 3	Gen I Combustor Testing
		Gen II Combustor Engineering
	3.1	Finalize Test Plans
ļ	3.2	Gen I Mixed Mode Testing
	3.3	Hydrogen Fuels Startup Study
SP2-	3.4	Hydrogen Embrittlement Materials Tests
l	3.5	Gen II Combustor Engineering and Fabrication

	Task 4	Gen II Testing, F-Class Retrofit Combustor Conceptual
		Design
	4.1	Hydrogen F-Class Performance Studies
BP3-	4.2	Gen II Mixed Mode Testing
L	4.3	F-Class Retrofit Combustor Conceptual Engineering and Deployment Plan

Task 5 Final Report

Program Details:

- 4-year program duration
- 3 budget periods (tasks 2, 3, 4)
- Started Oct 1st, 2022. ~2 years into the program.
- Budget Period 1 and related subtasks are complete.

GE VERNOVA

Subtasks Zoom-in

Tas

Complet

GE)	GE	VERI	NOVA
-----	----	------	------

	Task 1	Project Management
	1.1	Project Management Plan
	1.2	Technology Maturation Plan
	Task 2	Gen I Combustor Engineering
	2.1	Define Proliminary Test Plans
ks	2.1	
te	2.2	Gen I Hydrogen Injector Engineering and Fabrication
	2.3	Gen I Subscale Hydrogen Injector Testing
	2.4	Gen I Mixed Mode Combustor Engineering and Fabrication
	2.5	Gen I Hydrogen Fuel Supply Engineering and Fabrication
	2.6	Hydrogen Embrittlement Study

Task 3 G		Gen I Combustor Testing Gen II Combustor Engineering
	3.1	Finalize Test Plans
In-Process	3.2	Gen I Mixed Mode Testing
	3.3	Hydrogen Fuels Startup Study
	3.4	Hydrogen Embrittlement Materials Tests
Oct '24 Start → 3.5		Gen II Combustor Engineering and Fabrication

Task 4	Gen II Testing, F-Class Retrofit Combustor Conceptual
	Design
4.1	Hydrogen F-Class Performance Studies
4.2	Gen II Mixed Mode Testing
4.3	F-Class Retrofit Combustor Conceptual Engineering and Deployment Plan

Task 5 | Final Report

- 11 injectors manufactured for full scale testing
- 15 "injectors" manufactured for subscale testing

2.3 Subscale Test Campaign

• Three phases of testing complete

2.4 Gen I Full Scale Combustor (excl. H2AFS & fueling)

• Hardware manufacturing, instrumentation, and installation is complete.

2.5 Gen I Hydrogen Fuel Supply Engineering and Fabrication

• Fuel supply hardware for Gen I testing complete

2.6 Hydrogen Embrittlement Study

• Study complete. Three areas of interest identified for testing.

3.2 Gen I Mixed Mode Testing

• Five of the planned six tests complete.

3.3 Hydrogen Fuels Startup Study

• In the brainstorming / planning phase. Testing complete EOY '24

3.4 Hydrogen Embrittlement Materials Tests

Manufacturing material test samples now. Testing complete EOY '24

7

Milestones

Budget Period	Milestone #	Title	Planned Completion Date	
BP1	1.1.1	Update Project Management Plan	Completed 11/02/22	
BP1	1.2.1	Create Technology Maturation Plan	echnology Maturation Plan Completed 12/21/22	
BP1	2.4.1	Complete Design of Gen I Test Hardware	Completed 6/07/24	
BP2	3.2.1	Complete GEN I Mixed-Mode Testing	ete GEN I Mixed-Mode Testing 9/30/24 🔷	
BP2	3.4.1	Downselect Approach for Hydrogen Start	select Approach for Hydrogen Start 12/31/24	
BP2	3.5.1	Complete Fabrication of Gen II Test Hardware	plete Fabrication of Gen II Test Hardware 9/30/25	
BP3	4.2.1	Complete GEN II Mixed Mode Testing	3/31/26	
BP3	4.3.1	Complete Pre-CDR Review 7/31/26		
BP3	5.1.1	Complete Final Report	9/30/26	

Gen I Mixed Mode Testing

First Test Completed June 20th. Everything worked well during a first test, despite the complexities. We were able to gather usable data on multiple injectors.

Since the first test, we have completed testing on four additional builds.

UTSR Workshop 2024, Tuscaloosa, AL

Test Stand Build

UTSR Workshop 2024, Tuscaloosa, AL

Test Stand Build

What are we looking at here?

- Standard Rake water in/out Standard Rake TC leads Standard Rake Emissions samples
- 3+3 Liner Rake Water in/out
- 3 Liner Rake emissions samples
- 3+3 TP Rake water in/out
- 3x5 TP rake emissions samples
- 4x AFS Fuel Connections
- 4x Dynamics pressure waveguides
- 3x Camera air & video signal bundles

Supporting Equipment

5 skids in the test cell to create Hydrogen-Natural Gas blends for each of the six AFS fuel circuits.

Gen I Full-Scale H2AFS Injector Performance May

				change?	
iguration	Test	Maximum Stable H ₂	Maximum H ₂ for robust operation*	NOx Emissions	dP/P
1	4	100%	Low	Moderate	Low
2	1,2,5	100%	Low	Low	Low
3	3	70%	Low	Moderate	Low
4	1	100%	Med	High	Moderate
5	1,2,5	100%	Med	Moderate	High
6	3,4	100%	100%	Moderate	Low
7	2,4	100%	Low	Low	Moderate
8	5	100%	Med	Moderate	Moderate
9	3,6	Last Test	Last Test	High	Moderate
10	6	Last Test	Last Test	Last Test	Moderate

Last Test

Last Test

Moderate

*Full load cycle conditions

11

Conf

6

Last Test

Nearing the end of the Gen I engineer / build / test cycle the team has made significant progress towards cultivating multiple concepts that operate robustly on 100% hydrogen fuel with low NO_X and dP/P. There is work to do to achieve the program goals, but we have multiple concepts that will move forward into the 2nd half of the program.

Year 3 Plans

Task 1	Project Management
1.1	Project Management Plan
1.2	Technology Maturation Plan
Task 2	Gen I Combustor Engineering
2.1	Define Preliminary Test Plans
2.2	Gen I Hydrogen Injector Engineering and Fabrication
2.3	Gen I Subscale Hydrogen Injector Testing

- **2.4** Gen I Mixed Mode Combustor Engineering and Fabrication
- 2.5 Gen I Hydrogen Fuel Supply Engineering and Fabrication2.6 Hydrogen Embrittlement *Study*

	Task 3	Gen I Combustor Testing
		Gen II Combustor Engineering
rap up 「	3.1	Finalize Test Plans
to '21	3.2	Gen I Mixed Mode Testing
	3.3	Hydrogen Fuels Startup Study
	3.4	Hydrogen Embrittlement Materials Tests
ar s	3.5	Gen II Combustor Engineering and Fabrication
ocus 🥤		
	Task 4	Gen II Testing, F-Class Retrofit Combustor Conceptual
		Design
	4.1	Hydrogen F-Class Performance Studies

- **4.2** Gen II Mixed Mode Testing
- **4.3** F-Class Retrofit Combustor Conceptual Engineering and Deployment Plan

Task 5 Final Report

Plans for year 3: Oct '24 - Sept '25:

- Wrap up embrittlement testing & H₂ startup subtasks
- Use analytical tools to look back at Gen I designs and compare with experimental data.
- Create Gen II system & H2AFS injector definition.
- Manufacture and instrument Gen II system & H2AFS injectors.

The GE team offers our sincere thanks to the NETL for supporting this collaboration, as well as numerous previous collaborations. We would not be able to do this work without your support.

Thank you!

GE VERNOVA

This material is based upon work supported by the US Department of Energy under Award Number DE-FE00032173.