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Hydrogen turbine technology: Hydrogen and hydrogen/natural gas blends are being pursued to

reduce emissions and improve engine operating efficiency

Laser powder bed fusion (L-PBF) fabrication: Design of fuel injectors with cooling passages & fuel
channels for both premixed and non-premixed gas turbine combustion systems

Goal: Document AM candidates in operation ranges that are undocumented and relevant to hydrogen
service

Approach: Property-Microstructure Evaluation L-PBF Ni-Superalloy for Industrial Gas Turbine Fuel Injectors
« Alloys: Solid Solution (IN625), v' Precipitate (Haynes 230), y'/y" /6 Precipitate (IN 718) strengthen
« Compare L-PBFproperties to wrought properties

« Screen the tensile, creep, and fatigue properties up to 815 °C in air.
» Porosity / defects - Location specific microstructure — Impact of minor phases
» Failure mechanisms with fractography, cross-section analysis, and TEM

« Assess hydrogen embrittlement (HE) susceptibility using slow strain-rate tensile testing
> Ex-situ electrochemically charged and then test to failure
~ » Exfend fo in-sifu Testing, examine elevate femperature hydrogen atfack and damage =~~~ =~
» Screen materials behavior under conditions that mimic service On-going
» Coupon exposure various fuel environments at elevated temperature, pressure, and H,O vapor & foUkre
wor

» Capture prior thermal history& assess impact on select properties

,;“'} U.S. DEPARTMENT OF
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Laser Powder Bed Fusion (L-PBF) Processing N=|NAToNAL

* IN625, IN718, Haynes 282

. L-

PBF printing with Ar gas-

atomized powders
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Siemens
EOS M290 machine

Optimized parameters
consistent with EOS
specifications,

Bidirectional scan strategy
40 um layer thickness

Vertical Z-direction test bars
and blanks in the build
direction

Stress Relief on the build
plate

Heat freated fo industrial
practice.
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(1) Met. as-printed  (5) Tensile / Creep LABORATORY

(1) Met. solutioned Z-blanks
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Solid Solution vs. '/y”/6 Precipitate vs. Yy’ Precipitate Strengthen

WDXRF/LECO Measured Compositions on L-PBF Material

S w0

Wt.% Ni Cr Mo | Nb Fe Ti Al Co C
L-PBF 625 61.5 | 21.3 9.1 3.7 40 | 0.08 | 0.06 | 0.08 | 0.0124

X
©~ NbC
(sparse)

L-PBF 718 529|187 | 3.1 | 516 | 183 | 096 | 0.48 | 0.21 | 0.0525

RS L-PBF H282 | 58.1 | 19.2 | 8.8 | 0.05 | 0.11 | 212 | 1.22 | 10.3 | 0.0459

Fine .A|203

il
oxides (black) B

- -
Nanometer
— 1 pm [¥-andypRis S o
e ol - Composition Compared to Specifications
Heat Treatment:

» Stress-relieved on the build plate Carbon specification

* L-PBF 625 (no HIP): Solution heat tfreatment at 1175 °C for 1 hour. Wi.% C
As-printed porosity measured to be 0.04 + 0.02 % - HIP does Low C content 2
not appear necessary *—> 625 0.10 max

L-PBF 625

* L-PBF 718 (w/HIP): Modified AMS 5663 specification schedule 718 0.08 max

Solutioning at ~980 °C for 1 hour (below &-solvus) + similar
holds/temps for 2-step aging H282 0.06
« L-PBF 282 (W/HlP)Z Alloy specifications
. o . https://www.specialmetals.com/documents/technical-bulletins/inconel/inconel-alloy-718.pdf

Two-step solutioning above 1150 °C with 1 hour holds each https://www.specialmetals.com/documents/technical-bulletins/inconel/inconel-alloy-625.pd
Standard single step aging 788 °C for 8 hours https://haynesintl.com/en/datasheet/haynes-282-alloy/#alloy-brochuref

.S. DEPARTMENT OF



https://www.specialmetals.com/documents/technical-bulletins/inconel/inconel-alloy-718.pdf
https://www.specialmetals.com/documents/technical-bulletins/inconel/inconel-alloy-625.pdf
https://www.specialmetals.com/documents/technical-bulletins/inconel/inconel-alloy-625.pdf
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Near equiaxed: Grains recrystallize
625

Elongated like
As-printed:

Grains
restrained by
o-ppts at GBs

In-Plane
(XY)
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Mechanical Tests
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L-PBF 625, 718, 282 property tested in fully heat-treated condition LABORATORY
Three tensile tests (E8/E21) Hydrogen embrittlement - 5 slow strain tensile tests at RT
- Room Temp, 650°C, 750°C + Surfaces milled to 600 grit finish - good electrical contact for charging.
. 1 test each at 2.17x 103 mm/s to1.2%, then 2.17 x 102 « Ex-situ H, charging at TmA/cm?in 0.1 M H,SO, with +1 g/L CH,N.S for 72 h

mm/s thereafter « Test to failure using 6.3 x 10-4.s:1 strain rate

Four creep rupture tests (E139) Ductile

Brittle

- 650-815°C /100 - 600 MPa

Eleven sirain-controlled low cycle-fatigue tests
« 650°C

« Strain range vs. Fatigue Life (N) curve (S-N curve)

* R=0.05, f=0.2 Hz for strain range up to 1.5%

Stress (o)

Machined from Z-Blanks

Low-Cycle Fatigue
|

~15+.002

/ﬁ——’—j\
Lris R1_5_|'
3 inch .
1.25 inch
I——— Inc —-I ‘_r
I 0.25 inch 0.375 inch
Tensile & Creep Brittle fracture

S. DEPARTMENT OF

Ductile fracture

_SAR—CHE
H Eindex - e
AR

AR = As-received condition (no charging)
HE= Charged condition

Near-net shape Z- dog bones

2.5 inch length
. . e . .
| ]
0.4 inch 0.23 inch
L | ~—

0.8 inch t=0.07 inch

Additional ex-situ and in-situ Hydrogen Embrittlement testing on-going




Tensile Properties

YS & UTS (MPa)
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Compared to wrought product:
- All L-PBF alloys shows modestly higher ductilities over the temperature range
« L-PBF 625/718 Drop-off in UTS shifted to lower temperatures by ~50 °C < refined grain structures

« L-PBF 625 yield strength significantly lower, possibly due to124 ppm C content - fewer MC carbides
 L-PBF 282 has very comparable UTS and yield-strength < similar grain structure to wrought
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Creep Behavior N= A
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Investigation of deformation behavior and failure modes is underway LABORATORY
15 T T T T T
Larson-Miller Plot: All Alloys Compared .} 815°C — mcmwai || Double minima for 750°C and
* 100 MPa ——HIC 130 VYPo HFT2, 815°C creep curves
! ' 650 °C g 1o ] . 1Stdminimum y;emerges
1000 g 600 MP B * 2" minimum o emerges
-“ i ' a Ei 7.5¢ ,/, 650°C
DL RS T T — — BEKEEY AT W00MPa /1 LPBRFE25 T
e Ll 200 MPa ] >
’a 1 | 1 | 1 ml 650°C
% D0 100 200 300 400 500 600 1000 ; . ,
= Time (h) 0.1 1 10 100 Time,Hours
3
e Well-defined primary, secondary and tertiary stages
7 Y~ = . E
L-PBF 718 L-PBF 282
20— 771 " 17 T~ T T T T 1 ——————————
®  L-PBF 262 s0oc 725C [ mememmel] | 750°C = mremmemm |
= L-PBF718 1300 MPa| 375 MPA— 750G 200 MPa.(os) | | 1 650°C 300 MPa | — seoczzsmrainion) |
100 F L-PBF 625 L AN 15 - 15} 600 MPa B15°C 150 MPa (HF12)| |
\. N \ < = 815°C ]
\ AN \ £ s [800°C 150 MPa
R S (S S T £ 10l . £ 10[225 MPa i
20 22 24 26 28 g : Low creep ductility § :
LMP (C = 20)/ 1000 | 00°C 450°C E _
 All three alloys perform like wrought product [ 450MPa 600 MPa /] :
 L-PBF 718 is within statistical deviation; however, on the ol . — ] ol e
] 100 200 300 400 500 600 700 0 1000 2000 3000 4000 5000

lower side - likely a result of fine, restrained grains Time (h) Time (1)
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Strain-Confrolled Low Cycle-Fatigue

'

L

NATIONAL
ENERGY
TECHNOLOGY
LABORATORY

Detail examination of fracture surfaces complete; microstructural linkage and

evaluation of hysteresis planned

Similar performance to
wrought alloys

. L-PBF 718 somewhat lower

For L-PBF 625

« Low applied strain ranges
show stage one
crystallographic initiation

« High opglled s’rroln ranges

show iNnitiations at
dislocation egress from the
surface

Further work on other alloys
and hysteresis underway
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Applied strain range, %
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L-PBF (R= 0.05) vs Wrought (R =-1)
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LPBF 282
LPBF 625
LPBF 718
H282, wrought
IN625, wrought
IN718, wrought

OO0 %+ 0

S-N curve 650 °C

103 104 10°
Cycles to Failure, Nf

Crack initiation and propagation

\L—PBF 625 L-PBF 282




Slow strain-rate testing to screen H,-embrittlement (HE) |[N=[FRYA
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2 Tests on Uncharged / 3 Tests on Charged Test Bars HE Index LABORATORY
) ) Before IN625 IN625 H282  IN718 L-PBF 718 (most HE) > 282 > 625 (least HE)
EX-S“’U H2 Charg"‘]g milling Hj-charged Fled Faed Failed
JIORET . — - L-PBF 625 L-PBF 282 L-PBF 718
* Largest hydrogen “Ta As Receved 1 || (B) —As Recenved 1 — As Received 1
ingress depth (HID) won | 625 — hareea 1+ | [ 282 e T E=Chamear
for L-PBF 625 o . Charpeas || - Crargea? [ 1] E-Shareas
- Brittle features in HID g HE=11.9 * 2.0% !
for all three alloys 8 = |~ ' HE = i |/|HE=27 +7%
- Britfle cleavage o ] | 1827% |1 : |
extends past HID in S ] | ; l
L-PBF 718 N I ik
I !
Edge of fracture surfaces: a Tensile Strao.:n {mm/mm) "’ - Tensile Str:isn (mm/mm) b h Tensile Str;:n (mm/mm) "’

625 As-received 625 Charged

282 As-received 282 Charged 718 As-received 718 Charged

B = >,
i e TS 5
e i

Transgranular
Propagation

< Recrystallized grains after FHT > <€—— Restrained grains ——>




Wrought Alloy Comparison

Hydrogen Embrittlement and Fractography

AM and wrought behavior is similar;
however, AM 625 does seem 1o experience
slightly reduced mechanical degradation in
comparison to the wrought 625.

Brittle features on both samples inside HID.
HID slightly larger for AM 625

56 + 14 um

) Highvac. [B1x250
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Material HE Index
Wrought IN625 144% = 37%
AM IN625 119% = 2.0%
1000 -
3 Wrought As Received 1==== AM Charged 1*====\Wrought Charged 1
=AM As Received 1 = AMCharged 2 ==  Wrought Charged 2
900 3l * AMAsReceived2  : - AMCharged3
800 —
700 4 N
Jdo
600 — : | l
500 0o
400 ; 0o
300 4 '
200 - o]
d
100 — : | i
01 L.

0.0

0.5
Tensile Strain (mm/mm)

1.0
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Objective: Understand the effect of geometric residual stress on the materials-hydrogen

interactions and performance of fuel injector candidates
Lab-scale articles that capture realistic

First Build Set Delivered Initial predictions of residual sitress distribution injector features: 54 pieces per alloy

WP i Fo - f,’ L7
4 ‘?13!

L-PBF 625

Regular C-shape
dogbones Bars
" (3 sizes)
Inverted
Blocké_ clovers

Bottom
Highlights:

v' Continued printing partnership with Siemens Energy

Notched
v' Designed lab-scale articles with realistic injector geometric A g,ﬁﬁfﬁt
features and completed printing of first alloy, L-PBF 625
v Completed initial residual stress simulations with ANSYS of Next steps:
select lab-scale articles * Measure location-specific residual stress of selected geometries
v Successfully awarded beam time under am ORNL Neutron using neutron scattering
Sciences General User Proposal to measure residual stress * Assess the impact of stress concentration on H,-damage and
using Spallation Neutron Scattering (SNS) performance debits

.S. DEPARTMENT OF




Gas Turbine Combustion Simulation Rig N=|anonat
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NETL-Research and Innovation Capabilities
Environmental performance testing of T/EBCs, CMCs, and other high temperature materials

: : ‘)‘ser in

_ —=——High velocity
gas jet

)

Sample
carousel

v Ultrahigh surface temperatures v Complex gas mixtures T .
v’ High gas velocity v' Backside cooling (thermal gradient) ReCI.|ISfIC gas turbine
v' High pressure v Long exposure times (unattended operations) environments

» U.S. DEPARTMENT OF

Commissioning in 15t half of FY25
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NETL-Research and Innovation Capabilities

Slow Strain Rate Testing Fatigue Crack Growth

* Fatigue Crack Growth

« Tests can be performed in aqueous
electrolyte or in pure hydrogen gas

» Autoclave pressures up to 1500 psi : = B - - >, FER ‘_' = o
» Autoclave temperatures up to 288°C _ - 1 T w S j_..:_

1)

* Slow strain rate testing
* In-situ (loading while charging)

» Creep Testing
* Ar-2.8% H, Up to 1200°C
* 100% H, future

Hydrogen autoclave for gaseous
pre-charging

A

Oxygen

Pressure Back e
calibration

° H2 (pUI’e) (600 °C / ]600 pS|) reliefvalves itjf;f, station

hookup

Hydrogen Permeation
» Devanathan - Stachurski cell
» Hydrogen gas permeation

Hydrogen absorption / desorption
» Scanning Electrochemical Microscopy

Analytical Capabilities
* Thermal Desorption Mass Spectrometry
» Hydrogen microprinting

Hydrogen autoclave for pre-charging Scanning Electrochemical Microscopy

U.S. DEPARTMENT OF
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Melt Processing Capabilities

* Air Induction Melting: up to 300 Ibs

* VIM: 15, 50 and 500 lbs

* Vacuum Arc Remelt/Electro-Slag
Remelt 3-to-8-inch diameter ingots

Thermo-Mechanical Processing

Capabilities

* Heat-treatment furnaces:1650°C, inert
atmospheres and controlled cooling.

* Press Forge: 500 Ton

* Roll mills: 2 and 4 high configurations.
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Melt Processing Capabilities

 Alloy Development Research Building, completion in 2026.

* Enhanced melt processing capabilities for high
temperature and ultra-high temperature alloys.

* Operational Fall 2026.
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Thermo-Mechanical Processing Capabilities =
* Operational in 2025/2026.
* 1500 Ton Press Forge
* 800 Ton Extrusion Press
* Wire Drawing Equipment
* Experimental wire-based/solid feedstocks for
additive manufacturing

Additive Manufacturing Capabilities

e Operational in 2025

* Lased Direct Energy Deposition Dual Wire/Powder Feed
Tool

U.S. DEPARTMENT OF
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Summary & Concluding Remarks N =|NATIONAL
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Good progress towards screening the tensile, creep, and fatigue properties up to 815 °C in air

and the native hydrogen embrittlement susceptibility at room temperature.

Examination of L-PBF superalloy candidates revealed:

» Microstructure: Precipitate & carbide phases observed are consistent with conventional alloys after selected heat
treatments. L-PBF 625 and 282 show near equiaxed grain structure
(1) Fine Al,O5 oxide inclusions in L-PBF 625, which are highly stable with no noticeable impact on properties
(2) Grain boundary stabilization with densely distributed é-precipitates along grain boundaries in L-PBF 718

Tensile behavior is consistent with wrought, particularly L-PBF 282 behavior, while L-PBF 625 & 718 showed modest
differences, indicating good potential to apply within IGT.

Creep behavior studied (650 - 815 °C / 100 - 600 MPa): L-PBF alloys performed consistently with reports for wrought
counterparts, with L-PBF 718 on lower end stafistically, likely due to refined grain structure.

LCF behavior at 650 °C: S-N curve comparison with literature data looks promising.

Hydrogen embrittlement: As-received L-PBF 625 is the least prone to hydrogen embrittlement, while L-PBF 718 is the

Most prone
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