
NETL/RIC Produced Water Research Partnership FWP

2024 Resource Sustainability Project Review Meeting

Acknowledgment:

We thank the Department of Energy's Office of Fossil Energy & Carbon Management (DOE/FECM) for their support of this research.

Fossil Energy and

Carbon Management

DOE/FECM HQ Program Manager: Hichem Hadjeres

U.S. DEPARTMENT OF

ENERGY

DOE/FECM HQ Advanced Remediation Technologies Division: Vanessa Núñez-López

NETL/TDC Technology Manager: John Rogers

<u>Disclaimer</u>: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release.

NATIONAL ENERGY TECHNOLOGY LABORATORY

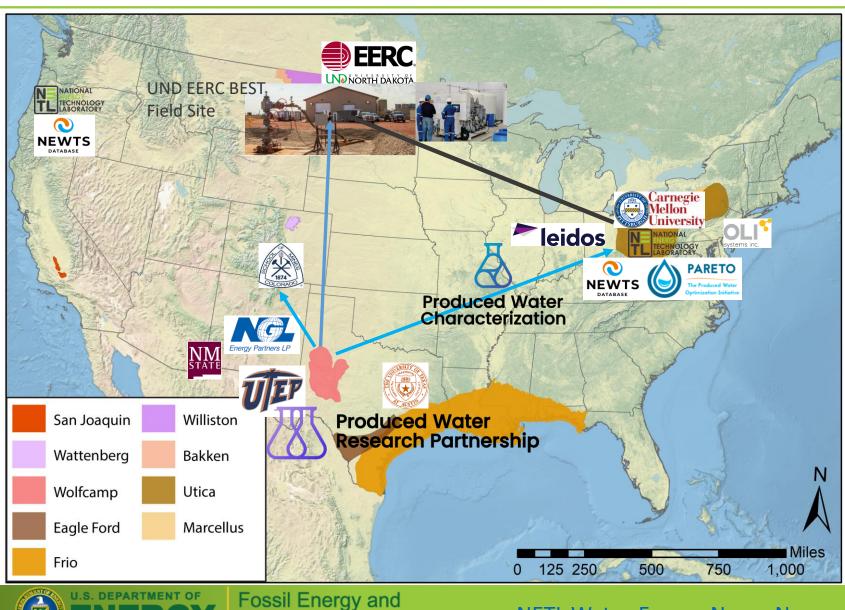
Produced Water Research Partnership FWP

Program Goal

The Produced Water Research Partnership FWP is a partnership between DOE, NETL, universities, and industry to <u>characterize</u>, <u>manage</u>, <u>clean</u>, and <u>treat produced waters</u> across the United States to reduce the environmental impact of O&G developing.

Task 2: Lowering the Cost of Zero Liquid Discharge+Resource Recovery (ZLD+RR)

- Demonstrate novel water treatment processes at the pilot-scale <u>on real produced water</u> <u>Task 3: Integtrating Artificial Intelligence into NEWTS for Produced Water Characterization</u>
- Build off existing produced water datasets to provide validated, high-quality data for modeling
- Identify data gaps and work to fill them through data collection, AI/ML, and chemical analysis
 <u>Task 4: Leveraging PARETO for REE/CM Recovery from Produced Water</u>
- Extend PARETO to design and operate multi-enterprise networks for REE/CM recovery from PW



Produced Water Research Partnership Field Work Proposal (FWP)

Produced Water Research Partnership FWP & Associated NETL FWPs

Carbon Management

Task 2: Lowering the Cost of Zero Liquid Discharge and Resource Recovery

- The Colorado School of Mines (w/ NGL)
- The University of Pittsburgh
- The University of North Dakota Energy and Environmental Research Center (BEST Field Site)

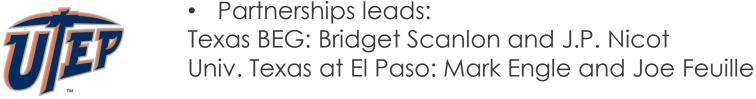
Task 3: Integrating Artificial Intelligence into NEWTS database for Produced Water Characterization

- The University of Texas at El Paso
- The University of Texas at Austin

Task 4: Leveraging DOE's PARETO Software for REE and other CM Recovery from Produced Water

- Carnegie Mellon University
- New Mexico State University

NETL Water-Energy Nexus News - Winter 2023 Issue.pdf (doe.gov) 5


Produced Water Partnership Task 3 Goals

- Utilize the NEWTS national level dataset in the following directions:
 - \succ Identify regions with high water use impact and low data availability.
 - Determine constituents of greatest interest for treatment

BUREAU OF

ECONOMIC Geology

- Generate samples which can be analyzed to expand ability to predict missing constituents of interest.
- \blacktriangleright Artificial intelligence (AI)/ML modeling will be performed to fill in the gaps in water chemistry

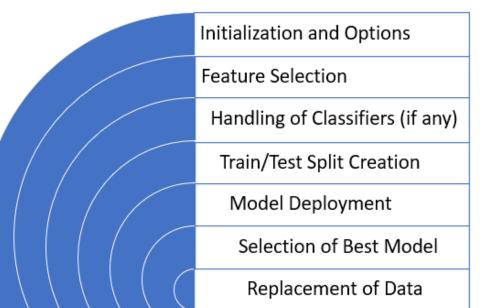
UT Austin Archived Historical Produced Water Samples

Samples stored at UT Austin, originally sampled around 1960

- ~850 Historical Produced Water samples from across the U.S.
- Cation compositions analyzed in 1960s are available at the NETL NEWTS group site on EDX
 - Rittenhouse et al. Historical Archived Data
- UT Austin and UTEP have analyzed ~80 samples for training AI/ML networks

Examples of intact samples with minimal or no water loss

Task#2: Machine Learning Approaches for Energy Wastewater Characterization



- To accurately model treatment and byproduct recovery costs for energy wastewaters, we need complete composition data.
- **CoDaRT (Constituent Data Replacement Tool)** was developed in python to predict missing constituents in a user's water data set using machine learning techniques.

- The tool applies machine learning algorithms to replace missing data
- The tool can use the user's data alone or combine user data with publicly-available NEWTS datasets.
- Will be made available in FY24 for public download via EDX

Task 2: Machine Learning Approaches for Energy Wastewater Characterization

CO-DART GUI

File Help Simulation Setup Basic Inputs Data Field Selection Fore	e Field Selection Unit Field Selection Outputs/Execution	0.8	8	•		٠		•	•
Algorithm Time: Correlation start point: Number of features: Minimum data threshold: Test Size: Random state value: Minimum Classification Threshold: Class Num: ✓ Stratify ✓ Non Negatives ✓ Extrapolation Select Which Models you wish to use	Error Calc Method: r2 Error Threshold: Data Type: User	0.6 0.4 22 0.2 0 -0.2 -0.4	 2 features, 0 classes 4 features, 0 classes 2 features, 0 classes 2 features, 5 classes 4 features, 5 classes 	•	•	•	• •	• • •	•
Ridge Lasso	Random Forest	-0.6 -	Deptiment primed & 8° 8° 03 10°	ړ د د ه پو Prel	iminar	^{ن مرو} م ^{یر} م ^{رو} مرود v Results	. ^૬ જે. છે. છે. છે	ANT OS ENE PERE P	NS 80 80
Bagging Regression AdaBoost Multilayer Perceptron	Gradient Boosting Regressor		Example data	replac	cemer	nt perfc	orman	ce for t	
		=	NEWTS USC	GS Proc			[.] Data	oase.	
			$R^2 = 1 - \frac{\sum(y_i - \sum(y_i) - \sum(y_i)}{\sum(y_i)}$	$\frac{(\hat{y}_i)^2}{(-\bar{y})^2}$	$\hat{y}_i = property$	ue value edicted value erage value			

1

Task 2: Machine Learning Approaches for Energy Wastewater Characterization

Before data replacement

Si	Sn	Sr	V	W	Cl	SO4	Br	CO3	HCO3
9	0.003	50							
8	0.012	30							
15	0	60							
8	0.003	50	0						
4	0.003	60	0						
5	0.003	50	0	0.01					
0	0	100							
3		150	0						
5	0.003	50	0	0.01					
2		300							
7		60	0	0.01					
5	0.002	80	0						
100			0.02						
500									
200			0.01						
150			0.01						
150									
150		15	0.015						
100	0.013	10	0.04						
1		900							
1		300							
1	0.01	300	0.008						
0		1000	0.01						
0		1000	0.025						
0		300							
0		300							
0		150	0.01						

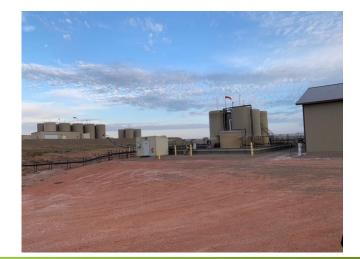
After data replacement

Si	Sn	Sr	V	W	Cl	SO4	Br	CO3	HCO3
9	0.003	50			72555.7	699.317	241.584		505.966
8	0.012	30			33319.8	657.754	107.375		534.926
15	0	60			36474.6	652.916	173.316		536.389
8	0.003	50	0		57912.9	681.402	209.881		567.832
4	0.003	60	0		88250	715.62	295.268		446.584
5	0.003	50	0	0.01	26524.2	645.571	102.513		507.962
0	0	100			131692	753.957	517.399		240.983
3	0.003	150	0		68915	674.23	302.664		452.968
5	0.003	50	0	0.01	36474.6	654.528	173.316		527.919
2	0.003	300			114946	703.783	441.735		330.563
7	0.003	60	0	0.01	45373.4	661.873	222.138		492.484
5	0.002	80	0		34371.4	649.69	129.355		483.481
100			0.02		669.15				
500									
200			0.01		3139.65		22.5239		
150			0.01						
150					669.15				
150		15	0.015		17107.6	640.467	70.3026		583.089
100	0.013	10	0.04		6372.5	631.419			454.124
1	0.025	900			232002	651.796	2202.49		140.296
1	0.07	300			189937	748.572	1323.28		121.017
1	0.01	300	0.008		197784	757.53	1350.12		360.498
0		1000	0.01		208301	644.625	1569.92		
0		1000	0.025		197784	644.625	1350.12		
0		300			176752	757.53	910.512		51.1679
0		300			176752	757.53	910.512		81.1031
0		150	0.01		176752	781.724	910.512		93.7455

Example using: Rittenhouse et al. 1960s Historical Archived Produced Water Dataset - Submissions - EDX (doe.gov)

Task 2: Pilot Demonstration & Characterization of Zero Liquid Discharge with Resource Recovery

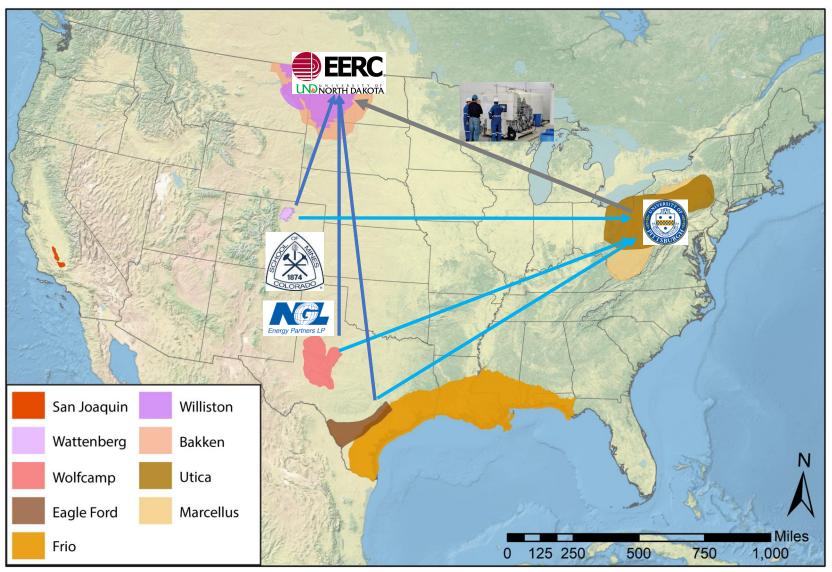
Challenge: Accurately measure the electrical efficiency of Zero Liquid Discharge Processes and determine which dissolved species end up in the permeate/distillate and the concentrated streams for resource recovery



Value: Provide the public with data on the compositions before/after pretreatment and brine concentration as well as electricity/energy consumption of water treatment equipment

Objective:

Determine the electrical efficiency under real-world conditions for advanced brine concentrating technologies and fully characterize the effluent before and after each major step in treatment process

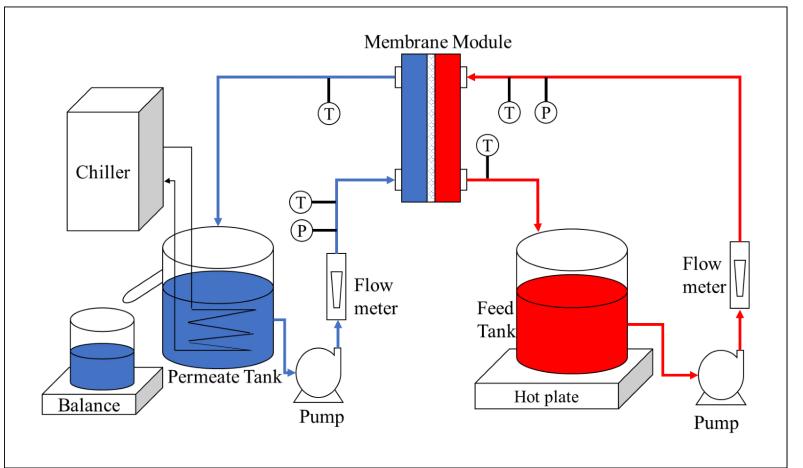


Fossil Energy and Carbon Management

Task 2: High-Level Overview

Fossil Energy and

Carbon Management



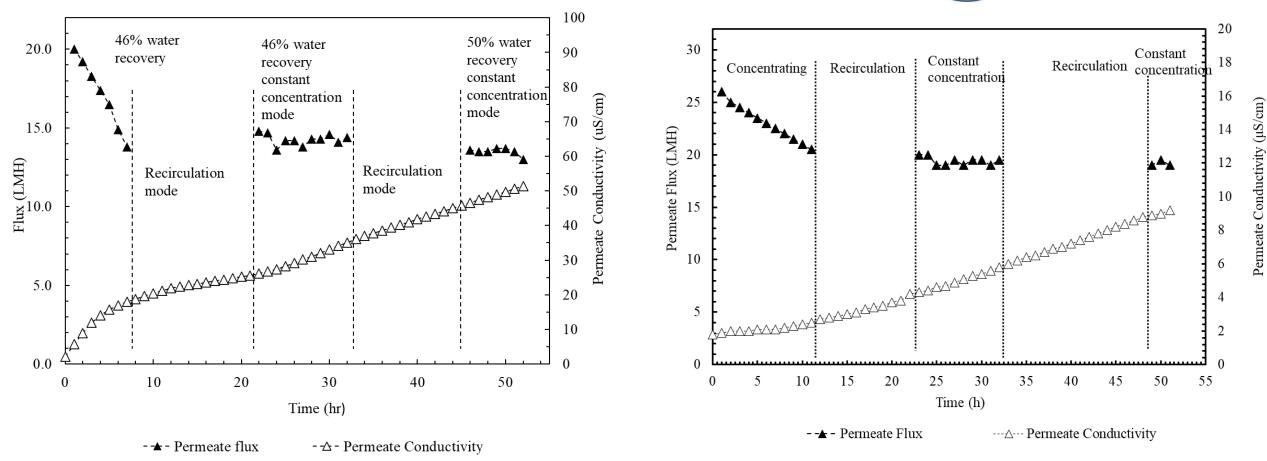
- Produced waters tested at pilot scale at Colorado School of Mines (MB/RO) and University of Pittsburgh (MD)
 - DJ Basin (CO)
 - Permian Basin (TX)
 - Eagle Ford (TX)
- Successfully tested of all three produced waters at the laboratory and small-pilot scale
- Totes of DJ Basin RO Concentrate, Permian Basin, and Eagle Ford were shipped to UND EERC BEST for MD pilot-scale testing

Step#1: MD Laboratory Analysis


All produced waters were operated at the laboratory

scale using Membrane Distillation (MD) at the University of Pittsburgh

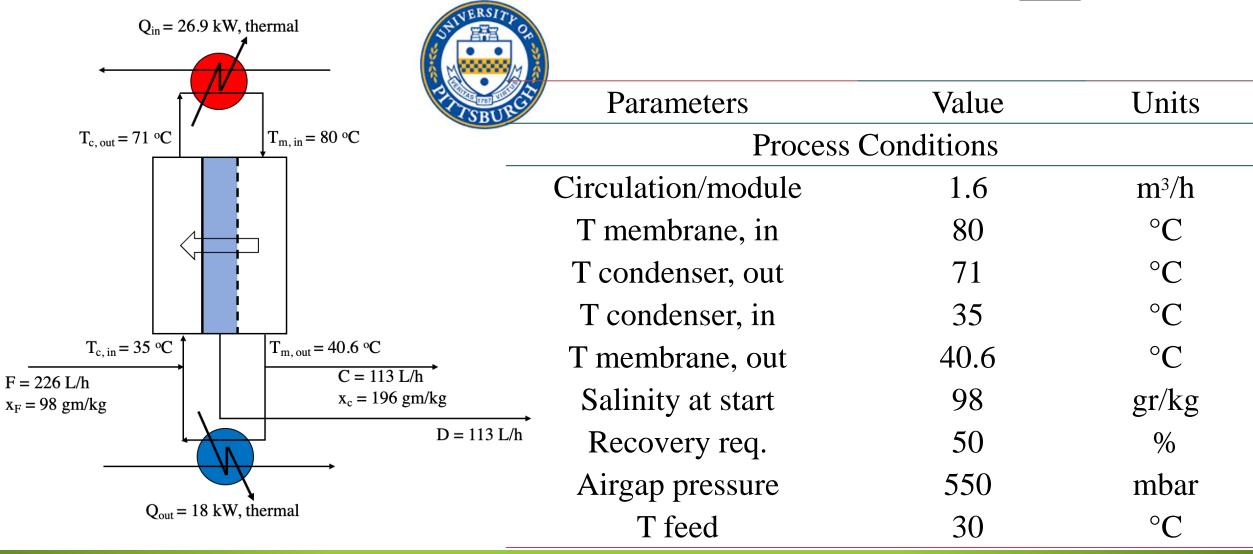
ATIONAL



U.Pitt PI: Radisav Vidic, U.Pitt Researcher: Ritesh Pawar

Results: Laboratory Studies

Permeate flux and conductivity in a long-term laboratory-scale test with pretreated Permian basin produced water

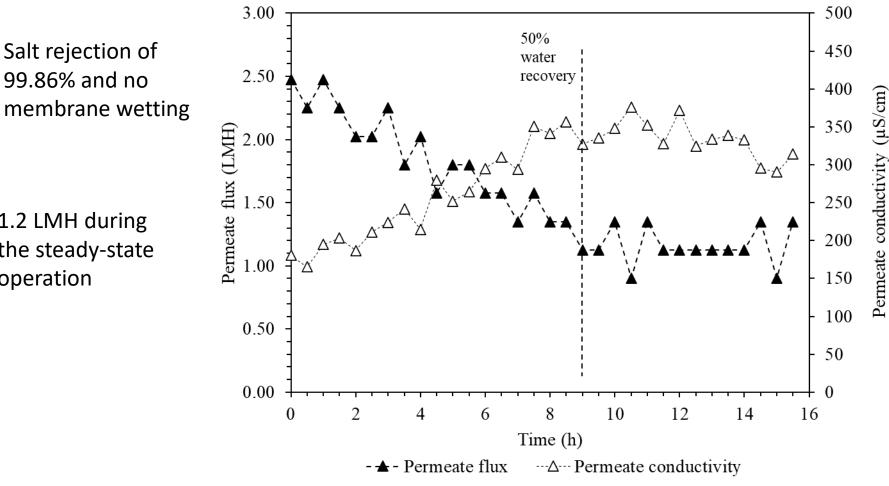

Permeate flux and conductivity in a long-term laboratory-scale test DJ basin RO concentrate

U.Pitt PI: Radisav Vidic, U.Pitt Researcher: Ritesh Pawar

Design: Pilot Scale Steady-state heat and mass balance design conditions

U.Pitt PI: Radisav Vidic, U.Pitt Researcher: Ritesh Pawar

MD Pilot Testing at UND EERC BEST



Pilot Testing Results: MD operation on Permian Water

ATIONAL .OGY

membrane wetting 1.2 LMH during the steady-state operation

99.86% and no

Permeate flux and conductivity using pretreated Permian basin produced water

Parameter	Value
Water recovery (%)	50
Feed flow rate (L/h)	81.7
Permeate flow rate (L/h)	63.5
Feed Conductivity (mS/cm)	121.5
Concentrate Conductivity (mS/cm)	214.9
Permeate Conductivity (mS/cm)	0.31
Salt Rejection (%)	99.86
Permeate flux (LMH)	1.17
T membrane, in (°C)	73.6
T condenser, out (°C)	63.9
T condenser, in (°C)	21
T membrane, out (°C)	31.8
Air gap vacuum (mbar)	-31.7
Steady state time (hr)	6.5
Total electrical consumption (kWh)	328.6
Specific electrical consumption (kWh/m ³ of feed)	618.7

• Water Quality

- pH, alkalinity, nutrients, TDS, TSS, COD
- TOC, TN, oil and grease
- Anions (e.g., chloride, sulfate, etc.) & Metals (e.g., iron, lead, etc.)
- Semi- and Volatile Organics

Non-targeted

- GC-MS (MSD)
- LC-qTOF-HRMS

Targeted Methods (commercial lab)

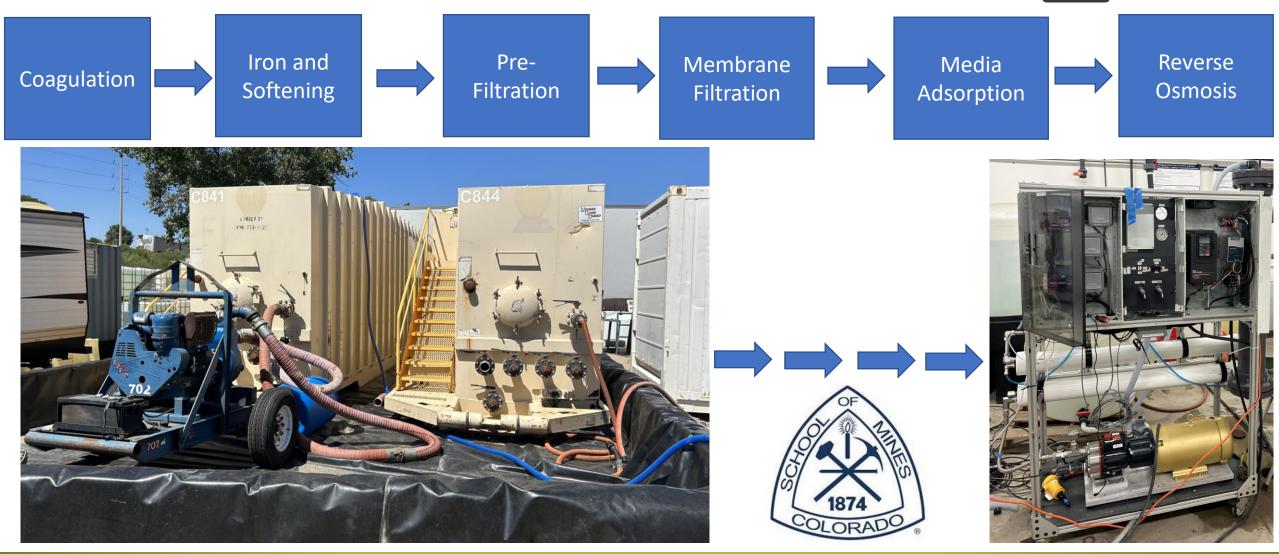
- PIANO Volatile Organics (USEPA 8260M)
- PCBs (USEPA 8082A)
- Pesticides (USEPA 8081B)
- Metals (USEPA 6020B)
- Mercury (USEPA 7474)

- Alkylated PAHs & Biomarkers (USEPA 8270M)
- Volatile Organics (USEPA 8260C)
- Semi Volatile Organics (USEPA 8270)
- Saturated Hydrocarbons (USEPA 8015D)
- Herbicides (USEPA 8151A)
- Perfluoroalkyl Chemicals (PFAAs LC-QQQ)
- Glycols (USEPA 8015D)
- Alcohols (USEPA 8015D)
- Herbicides (USEPA 8151A)
- Organic Acids
- NORM (USEPA 901.1)
- Dioxins and Furans (USEPA 8290A)
- Cyanide, Surfactants, Perchlorate

> 700 Chemicals

Pilot Testing: Chemical Analysis

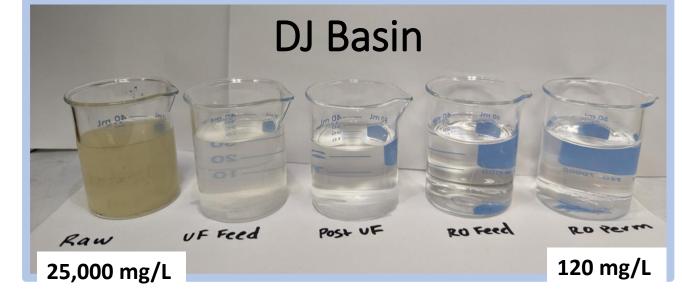
Analysis at Mines and NETL



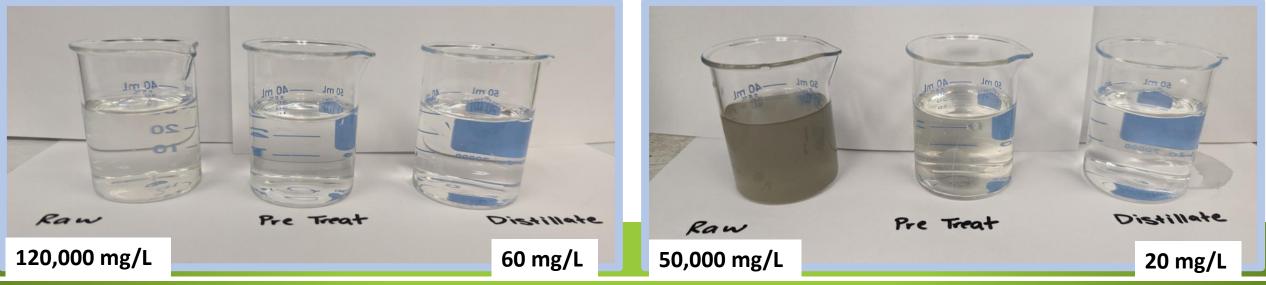
U.S. DEPARTMENT OF

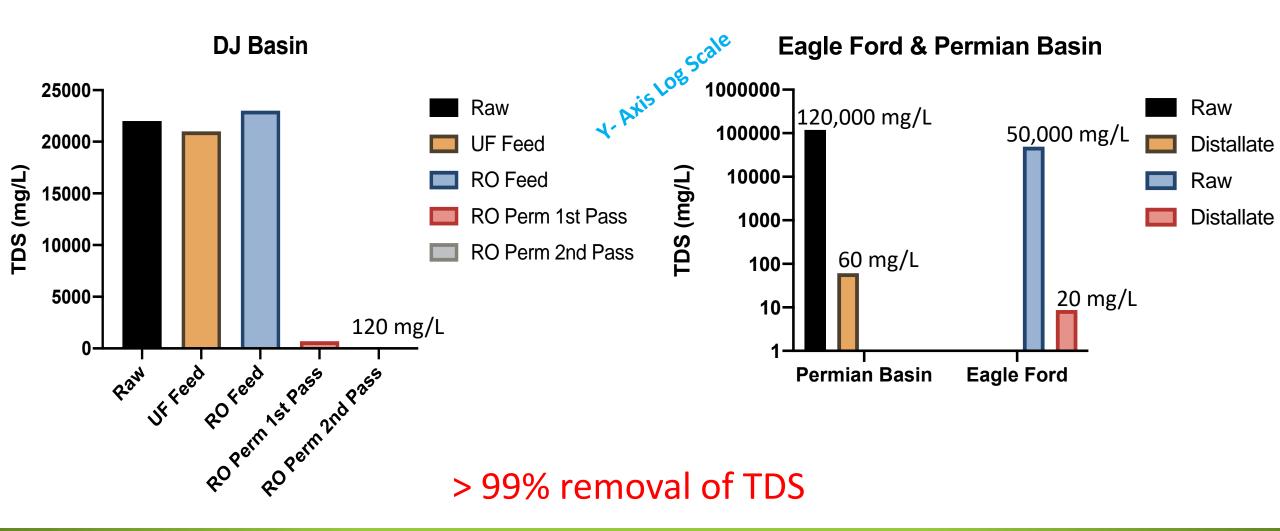
Additional samples are being stored for other researchers that want to study the treated water

Pilot Testing: DJ Basin Treatment Train


NATIONAL ENERGY

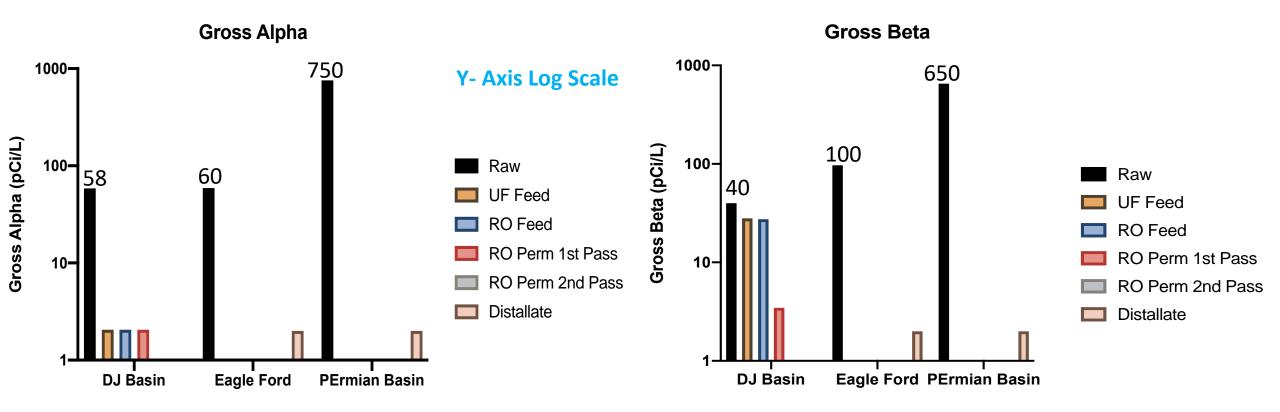
TECHNOLOGY LABORATORY

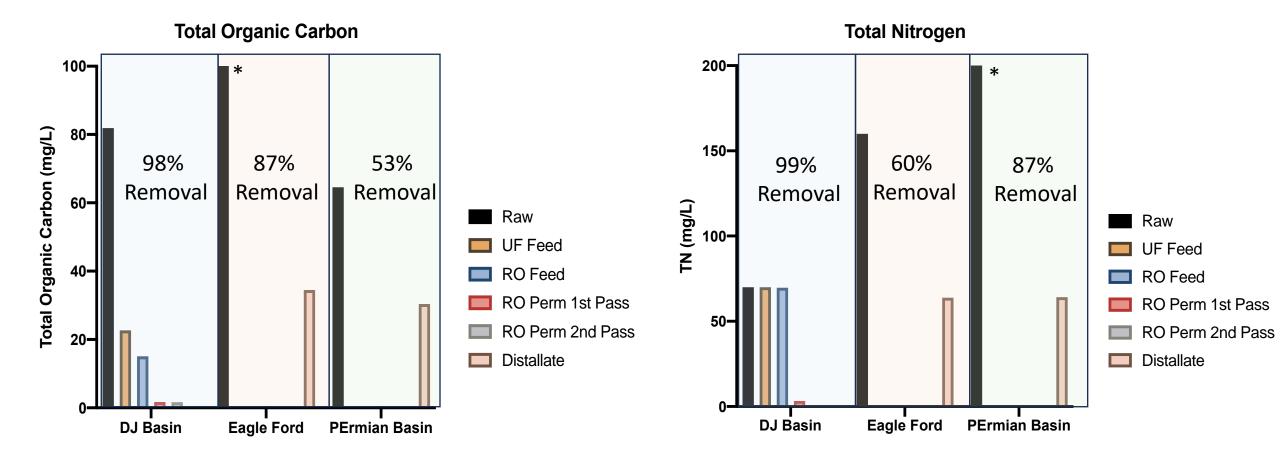

Pilot Testing: Water Samples



Permian Basin

Eagle Ford



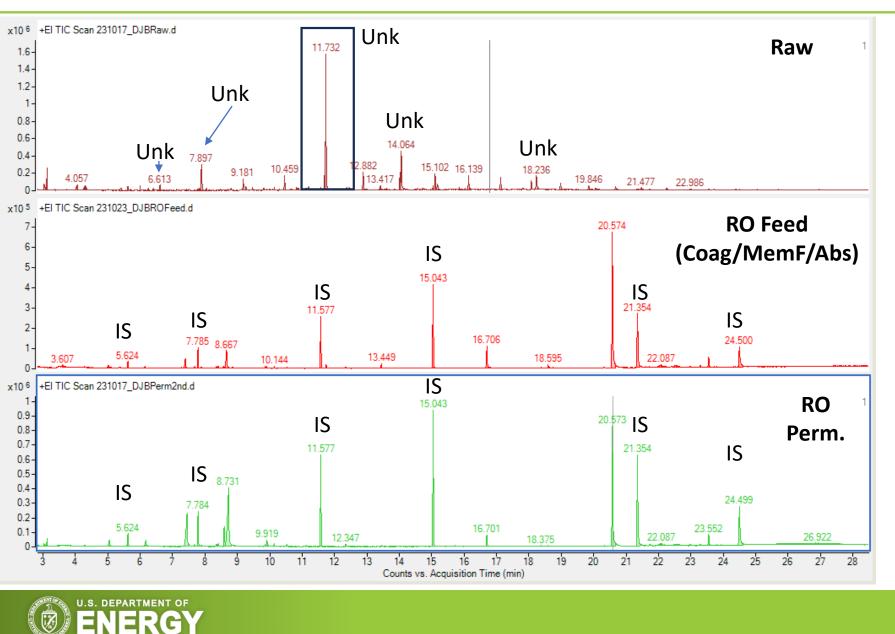


> 99% removal of Gross Alpha and Beta

				DJ	Basin		Eag	le Ford	Perm	ian Basin		
			UF		RO 1st		RO					
	Unit	Raw	Feed	Feed	Pass	Pass	Conc	Raw	Distillate	Raw	Distillate	
Gasoline Range Organics	mg/L	8	0.08	0.02	0.03	0.02	0.02	16	0.72	3.3	0.15	C2 – C10
Benzene	ug/L	3.4	0	0	0	0	0	2.2	0.2	1	0.02	
Naphthalene	ug/L	19.6	4.44	0	0	0	0	15.4	0	0	0	
Phenanthrene	mg/L	6.76	0	0	0	0	0	7.4	0	0	0	

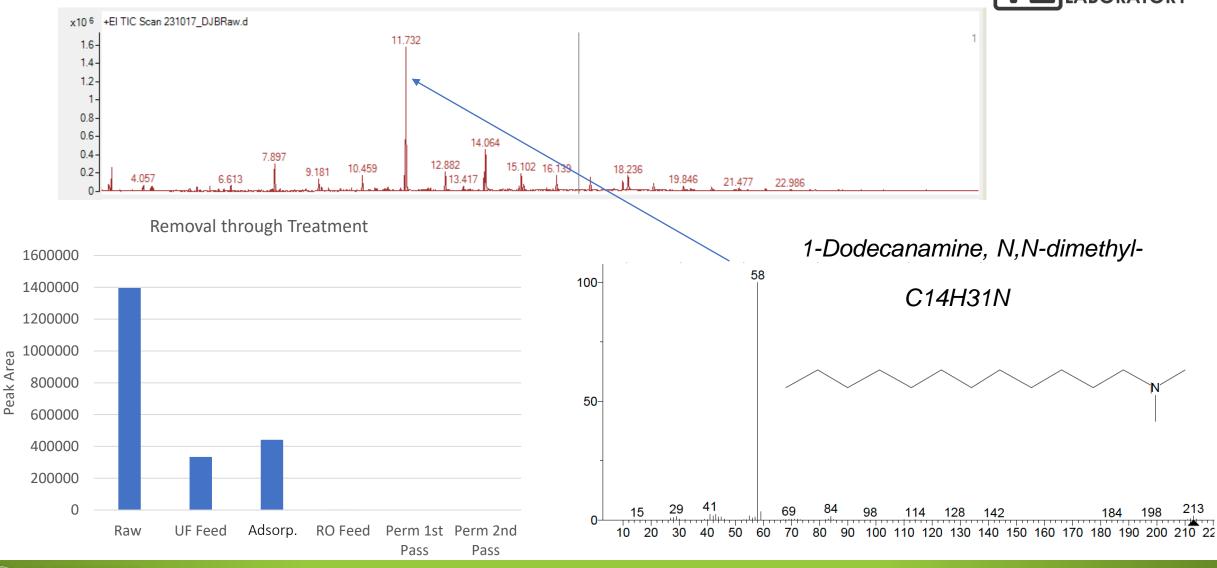
> 95% removals across treatment trains

				DJ Bas	sin		Eagle	e Ford	Permian Basin			
			UF	RO	RO 1st	RO 2nd						
Analytes	Units	Raw	Feed	Feed	Pass	Pass	Raw	Distillate	Raw	Distillate		
Surfactant (MBAS)	mg/L	0.23	0.48	0.39	0	0	0.73	0	0.8	0		
Methyl Alcohol	mg/L	10.1	4.63	4.48	2.56	3.57	63.8	64.1	52.2	57.7		
2-butoxy- ethanol	mg/L	2.53	0.66	0	0	0	0	0	0	0.303		
Acetone	ug/L	890	120	100	35	38	17,000	14,000	1,800	3,000		
Phenol	ug/L	124	1.35	0	0	0.21	169	95	132	213		



		DJ Basin							e Ford	Permian Basin	
Analyte	Unit	Raw	UF Feed	RO Feed	RO 1st Pass	RO 2nd Pass	<u>RO Conc</u>	Raw	Distillate	Raw	Distillate
PERFLUOROBUTANOIC ACID (PFBA)	ng/L	6.56	4.78	0	0	0	0	33.9	0	1.44	0
PERFLUOROPENTANOIC ACID (PFPEA)	ng/L	0	4.69	0	0	0	0	9.9	0	0	0
PERFLUOROBUTANESULFONIC ACID (PFBS)	ng/L	0	1.18	0	0	0	0	0	0	0	0
1H,1H,2H,2H-PERFLUOROHEXANESULFONIC ACID (4:2FTS)	ng/L	0	0	0	0	0	0	0	0	0	0
PERFLUOROHEXANOIC ACID (PFHXA)	ng/L	0	0.824	0	0	0	0.279	0	0	0	0
PERFLUOROPENTANESULFONIC ACID (PFPES)	ng/L	0	0	0	0	0	0	0	0	0	0
PERFLUOROHEPTANOIC ACID (PFHPA)	ng/L	0	0	0	0	0	0	0	0	0	0
PERFLUOROHEXANESULFONIC ACID (PFHXS)	ng/L	0	0	0	0	0	0	0	0	0	0
PERFLUOROOCTANOIC ACID (PFOA)	ng/L	0	0	0	0	0	0	0	0	0.21	0
1H,1H,2H,2H-PERFLUOROOCTANESULFONIC ACID (6:2FTS)	ng/L	0	0	0	0	0	2.9	0	0	0	0
PERFLUOROHEPTANESULFONIC ACID (PFHPS)	ng/L	0	0	0	0	0	0	0	0	0	0
PERFLUORONONANOIC ACID (PFNA)	ng/L	0	0	0	0	0	0	0	0	0	0
PERFLUOROOCTANESULFONIC ACID (PFOS)	ng/L	0	0	0	0	0	0	0	0	0	0
PERFLUORODECANOIC ACID (PFDA)	ng/L	0	0	0	0	0	0	0	0	0	0
1H,1H,2H,2H-PERFLUORODECANESULFONIC ACID (8:2FTS)	ng/L	0	0	0	0	0	0	0	0	0	0
PERFLUORONONANESULFONIC ACID (PFNS)	ng/L	0	0	0	0	0	0	0	0	0	0
N-METHYL PERFLUOROOCTANESULFONAMIDOACETIC ACID (NMEFOSAA)	ng/L	0	0	0	0	0	0	0	0	0	0
PERFLUOROUNDECANOIC ACID (PFUNA)	ng/L	0	0	0	0	0	0	0	0	0	0

Pilot Testing: Non-Targeted GCMS (MSD)



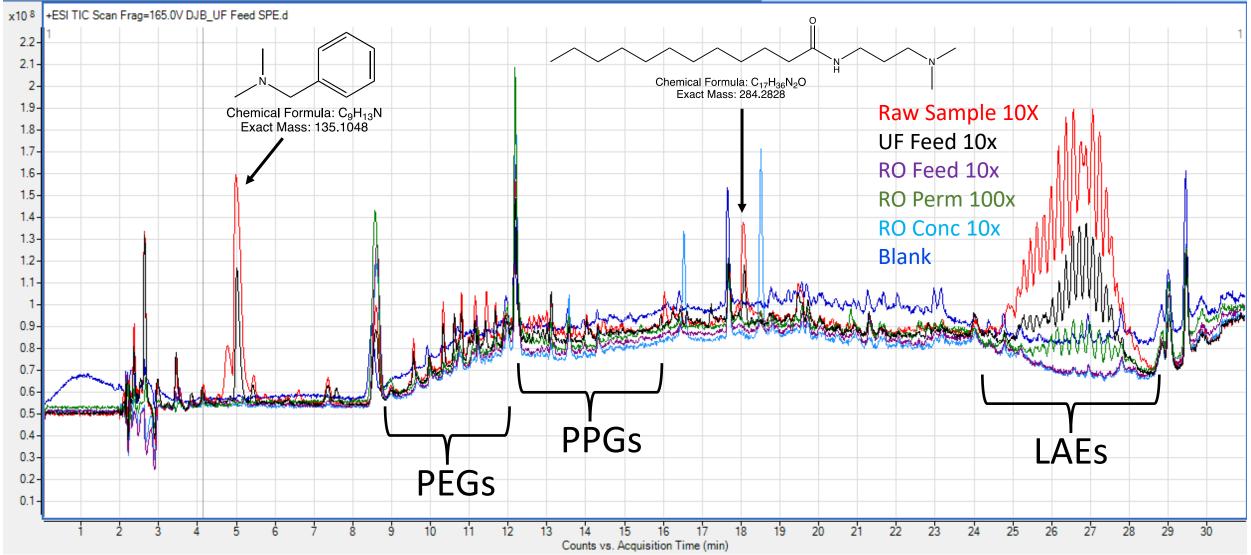
NATIONAL ENERGY TECHNOLOGY LABORATORY

Internal Standards

- 1,4-dichlorobenzene-D4
- Napthelene-D8
- Acenaphthene-D10
- Phenanthrene-D10
- Chrysene-D12
- Perylene-D12

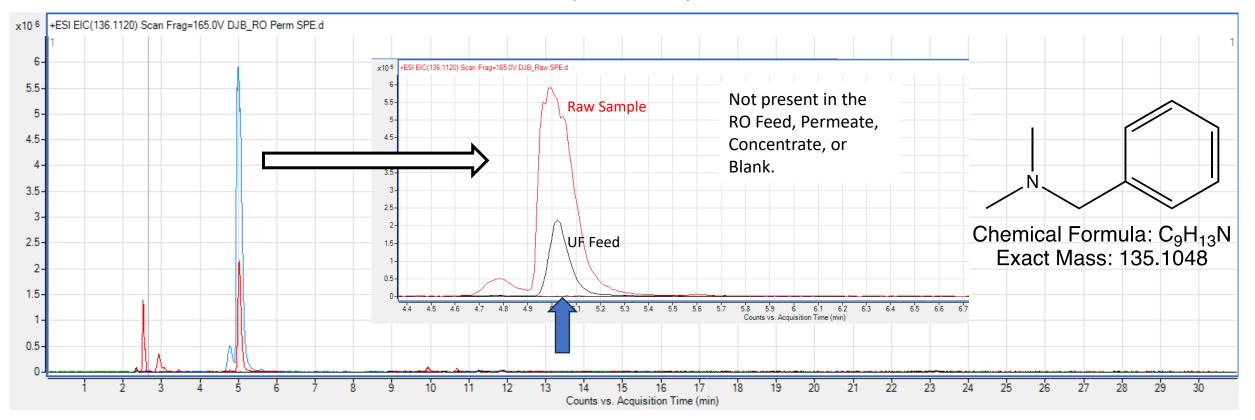
Pilot Testing: Unknown GCMS Identification (DJ-Basin)

NATIONAL


TEC

HNOLOGY

Pilot Testing: Unknown LCMS Identification (DJ-Basin)



Pilot Testing: Unknown LCMS Identification (DJ-Basin)

Dimethylbenzylamine

NETL Resources

VISIT US AT: www.NETL.DOE.gov

@NETL_DOE

@NationalEnergyTechnologyLaboratory

