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• Support the efficient, environmentally sound integration of fossil fuels into 
the H2 economy as a complement - and not a competitor - to more 
renewable energy resources penetration;

• Review and assess fossil-focused hydrogen production and utilization 
within the hydrogen economy;
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Major Goals and Objectives:

• Quantify the water intensity (water-energy nexus);

• Quantify the carbon footprint of the different fossil fuel hydrogen technologies 
(generation, transport, storage, and use) and identify existing and novel 
approaches to mitigate carbon footprint;

• Educate and prepare the next generation minority engineers on relevant aspects 
of the H2 economy.

Specific Objectives:

April 2024

Project objectives
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Hydrogen today and into the future

IRENA, 2023
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*DRI (direct reduced iron)

High fossil fuel 
reliance

Increase in 
renewables

2020 2050



Hydrogen today
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Use as fuel… 
Uses

•  Direct combustion
• Turbines

•  Fuel cells

• In modern aircraft its deployment requires 
significant changes to the 
airplane/propulsion system to 
accommodate fuel storage and address 
associated thermal management 
challenges.

Montgolfier brothers, 1783
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Hydrogen value chain 
fields, interconnection 
and roles
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1) Production

2) Storage

3) Distribution (storage)

4) End-user consumption

Source: Garcia-Navarro et al. (2023)
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Big Picture Questions
• What role should fossil fuels play in the development of the hydrogen economy?
• Can Fossil Energy (FE) complement the introduction of renewable forms of hydrogen production?

• US ~ 10 MtH2. 
• Worldwide, approximately  96% of H2 is 

generated from fossil fuels, particularly 
from steam methane reforming  (SMR) of 
natural gas but also from coal 
gasification.

• Could we, today, generate all H2 
via electrolysis from renewables?

Data from IEA

Mt = 109 kg = billion kg
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Context
• 10 MtH2 =10 x 109 kg H2 (10 billion kg); (Others use MMT).
• Ideal electrolysis electricity requirement (HHV) 141.9 MJ/kg = 39.4 kWh/kg

• US electricity generation in 2020 ~ 4009 billion kWh (utility scale) 
                                                                    + 41.7 billion small scale. [EIA]
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Da Rosa, Ordonez, 2021

~693 billion kWh (from 
renewables) (17.1%).

J. C. Ordonez



How much H2 will we need?

Plot from data from ANL, 2020 (Warning, categories may not be additive)
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U.S. Current use:  10 MtH2

Future: ~85 MtH2

J. C. Ordonez



Progress and current status of the project
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1. CO2e emissions
2. Water use  considerations – Explicit and 

Implicit
3. Levelized Cost of Hydrogen  and dynamic 

maps representation
4. Dashboard implementation status
5. Final considerations and future plans



1. CO2 footprint
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Three different levels of carbon capture

J. C Ordonez | 16| 16J. C. Ordonez

After:
Howarth RW, Jacobson MZ. How green is blue 
hydrogen? Energy Sci Eng. 2021;9:1676– 1687. 
https://doi.org/10.1002/ese3.956
26 July 2021

https://doi.org/10.1002/ese3.956


Blue H2- carbon capture in heat production to drive SMR

Parameter 1:  CH4 leakage (fugitive CH4).
Parameter 2:  Indirect upstream emissions. 
Parameter 3: Energy consumption in SMR 
[kWh/m3]
Parameter 4:  CO2 capture efficiency in SMR.
Parameter 5: CO2 capture in flue

(GWP_20)
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After:
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MATLAB (and Python)

| 18J. C. Ordonez

An application that allows the user to set 
(using sliders) the primary emission 
parameters for SMR under three cases of 
CC has been developed in MATLAB  

Next:
Enable 
exploration of 
uncertainty in 
these 
parameters



Total emissions (g CO2eq/MJ)

Distribution of CO2eq estimates for the given input

J. C Ordonez | 19J. C. Ordonez

Sampling using gaussians around base case estimate; 10^5 
samples (Sobol).  Implemented in MATLAB via UQLab.



Blue H2- carbon capture in heat production to drive SMR

Parameter 1:  CH4 leakage (fugitive CH4).
Parameter 2:  Indirect upstream emissions. 
Parameter 3: Energy consumption in SMR [kWh/m3]
Parameter 4:  CO2 capture efficiency in SMR.
Parameter 5: CO2 capture in flue

(GWP_20)
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Explicit and implicit water considerations for H2

| 21J. C. Ordonez

This effort seeks to quantify water usage in H2 production.

• Explicit (those dictated by the stoichiometry).
• Implicit opportunities for water savings  primarily 

associated with meeting the energy needs.
Water – Energy Nexus



We have explored the disaggregation of this 
average [water withdrawal is around 20.6 
gallons per kWh [1, 2, 3] and the average water 
consumption for cooling is about 0.47 gallons 
kWh−1 [1].] leveraging mostly NREL studies of 
water consumption for different modes of 
electricity generation [4].

2.38 gallons per kg direct water use Nuclear

Natural 
gas

Coal

Non-renewables

Explicit Water Intensity PV

Wind

CSP

Bio 
power

Geother
mal

Hydro 
power

Renewables
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• The water footprint is divided between water 
consumption and water withdrawal. 

• Water usage is, in most cases, tied to the cooling 
technology employed in the energy conversion 
system.

Once-Through Tower Dry

https://www.nrdc.org/sites/default/files/power-plant-cooling-IB.pdf
Cooling Technologies

Many alternatives

| 23



Fuel Type Cooling Technology

PV N/A Utility Scale PV
Wind N/A Wind Turbine

CSP

Tower
Trough

Power Tower
Fresnel

Dry Trough
Power Tower

Hybrid Trough
Power Tower

N/A Stirling

Biopower

Tower Steam
Biogas

Once-through Steam
Pond Steam
Dry Biogas

Geothermal1

Tower

Dry Steam
Flash (freshwater)

Flash (geothermal fluid)
Binary

EGS

Dry
Flash

Binary
EGS

Hybrid Binary
EGS

Hydropower N/A Aggregated in-stream and 
reservoir

Fuel Type Cooling Technology
Nuclear Tower Generic

Once- 
through

Generic

Pond Generic

Natural Gas

Tower
Combined Cycle

Steam
Combined Cycle with CCS

Once- 
through

Combined Cycle
Steam

Pond Combined Cycle
Dry Combined Cycle
Inlet Steam

Coal

Tower

Generic
Subcritical

Supercritical
IGCC

Subcritical with CCS
Supercritical with CCS

IGCC with CCS
Once- 
through

Generic
Subcritical

Supercritical

Pond
Generic

Subcritical
Supercritical

Non-renewables 

Cooling Technologies
Renewables 

Source: 
NREL/TP-6A20-50900 March 2011 
A Review of Operational Water Consumption and Withdrawal Factors 
for Electricity Generating Technologies 
Jordan Macknick, Robin Newmark, Garvin Heath, and KC Hallett 

1Most geothermal facilities can use geothermal fluids or freshwater for cooling. 
J. C Ordonez
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Water Consumption Comparisons 
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Dashboard Utility screenshot – A water requirements comparison tool.
| 25

Drop down menu to specify user 
selected technology

Specific water consumptions for different 
needs according to electrolyzer efficiencies.
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Implicit Water Savings 

• We have started exploring approaches to combine combustion processes and SOEC systems.

• We are interested in efficient ways to obtain flue gas composition (and water molar fraction in particular).

| 26

Schematic representation of potential use of flue gas water content in SOEC electrolysis.
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Implicit Water Savings 

Source: Goodwin et al. (2023).

CANTERA results for a combustor burning natural gas with air. (a) Base case: equivalence ratio =0.5. Output from 
combustor example: Heat release and Temperature. (b) Modified case: equivalence ratio =0.5; (c) Added computation 
of Molar Fractions. Equivalence ratio =0.5; (d) Added computation of Molar Fractions. Equivalence ratio =0.8.

• Example: a steady-state combustor 
modeled as a well-stirred reactor 
(evaluation of the effect of residence 
time on heat release and 
temperature).

• CANTERA toolkit will be useful in 
future explorations of the combustion-
SOEC.
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Levelized Cost of Hydrogen
Fundamental calculation used in the preliminary assessment of a H2 project.
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Cost of Hydrogen and Electricity.

Considers the average net current cost of H2 generation over the lifetime of the plant.

Eric Lewis, Shannon, Matthew Jamieson, Megan S. Henriksen, 
H. Scott Matthews ,John White, Liam Walsh, Jadon 
Grove,  Travis Shultz, Timothy J. Skone, Robert Stevens (2022)

Hydrogen plants:
• NG SMR with CCS
• NG SMR without CCS
• NG ATR with CCS

• Coal Gasification with CCS
• Coal Gasification without CCS
• Coal/Biomass Co-Gasification with CCS

Sub-costs:
•Levelized Costs of Capital
•Levelized Fixed Operating Costs
•Levelized Variable Operating Costs
•Levelized Fuel Costs
•Levelized CO2 Transportation and Storage Costs



Dynamic maps

Development of dynamic maps to visualize and evaluate

in different regions of the U.S.

Electricity cost ($/MWh)

Levelized cost of hydrogen
(LCOH) ($/kg)• The maps are used to display quantifiable data 

supported in a dynamic and interactive solution.

April 2024 J. C. Ordonez | 29



Dynamic maps

The user can Interact with the maps by:

1) LCOH Nationwide
2) Allows for state selection for closer look
3) Sectors: Industrial and Commercial

- LCOH for other technological routes will be considered for 
integration into the dashboard.

- More comprehensive overview of H2 economy.

April 2024 J. C. Ordonez | 30



Dashboard Implementation

| 31

CO2 eq. Emissions

Emissions

Uncertainty

Sliders for key parameters

LCOH

Impact of H2 
Integration (e.g., buildings)

Geographically dependent 
building load variance and 
electricity cost
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Water Consumption Comparisons 
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Drop down menu to 
specify user selected 
technology

Specific water consumptions for 
different needs according to 
electrolyzer efficiencies.

Water comparisons among electricity sources for hydrogen 
electrolysis

Comparison among H2 routes

SMR

GH2

GH2 Trailer
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Final Considerations

2) Conference: participation and publication of a paper summarizing the main 
results of the project.

1) LCOH and electricity costs for different end-use sectors (dynamic maps);

In this project:

a. Finalize the H2Dash with information from the last reports:

2) Use of water to produce electricity to generate H2 via electrolysis.

b. Submission of collaborative publications:

1) Journal publication: manuscript being prepared reviewing the integration of fossil 
fuels and different technologies in the H2 economy;

J. C. Ordonez | 33
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Using a Proton Exchange Membrane Electrolyzer Stack
(FFEDW / PEME stack)

After this project:

We plan to explore as a next project:

Fossil fuel emissions derived water for H2 
production

mP – products of combustion:

CO2 + H2O + others (NOX, SOX, CO, dioxins, furans, particulates…)

*Could be used as reverse/regenerative fuel cell (either 
as a Fuel Cell or Water Electrolysis

J. C. Ordonez | 34
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Other achievements

• Workforce training

• Training and development of students in the use of new tools and water-CO2-Energy relevant 
processes,

• PI engaged with colleagues at UFPR (Brazil) on H2 generation strategies for transportation;

• Co-PI involved in H2Hub activities.

J. C. Ordonez | 35
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