

Fossil Energy in the H₂ Economy – A Carbon-Water-Energy Adaptive Evaluation Platform

Project number: DE-FE0032084

PI: Juan C. Ordonez – FAMU-FSU College of Engineering Florida A&M University - Florida State University Program Manager: Dr. Heather Hunter

U.S. Department of Energy

National Energy Technology Laboratory Resource Sustainability Project Review Meeting April 2-4, 2024

Contents

- 1. Technology Background/Motivation
- 2. Big Picture Questions Project Relevance
- 3. Project Objectives
- 4. Progress and Current Project Status
 - CO2e emissions
 - Water use considerations Explicit and Implicit
 - Levelized Cost of Hydrogen and dynamic maps representation
 - Dashboard implementation status
 - Final considerations and future plans

| 2

Project Team

Current, past members and collaborators along the project

Juan Ordonez Professor FAMU-FSU

Comas Haynes Research Faculty Georgia Tech Research Institute

Catherine Potts BS-MS Student FAMU-FSU **Ja'Quan Young** ME Student FAMU-FSU

Shweta Nair Graduate Researcher FAMU-FSU

Ihana Severo Postdoc FAMU-FSU

Michael Johnson M.Sc. Student FAMU-FSU

J**onathan Niblack** ME Student FAMU-FSU

Shadi BilalLiam McConnellMS StudentME StudentFAMU-FSUFAMU-FSU

l Rory Feinberg CE Student FAMU-FSU

Tomas Solano PhD Student FAMU-FSU

Matthew Marton MS Student Georgia Tech

Joseph Lupton MS Student FAMU-FSU Camilo Ordonez Teaching Faculty II FAMU-FSU

Major Goals and Objectives:

- Support the efficient, environmentally sound integration of fossil fuels into the H₂ economy as a complement - and not a competitor - to more renewable energy resources penetration;
- Review and assess fossil-focused hydrogen production and utilization within the hydrogen economy;

Specific Objectives:

- Quantify the water intensity (water-energy nexus);
- Quantify the carbon footprint of the different fossil fuel hydrogen technologies (generation, transport, storage, and use) and identify existing and novel approaches to mitigate carbon footprint;
- Educate and prepare the next generation minority engineers on relevant aspects of the H₂ economy.

4

Hydrogen today and into the future

Hydrogen today

	COLOUR	DESCRIPTION: FEEDSTOCK	
		Grey: natural gas reforming without CCUS	
		Brown: brown coal (lignite) as feedstock	
		Blue: natural gas reforming with CCUS	
Green: electrolysis powered through		Green: electrolysis powered through renewable electricity	
		Pink: electrolysis powered through nuclear energy	
		Turquoise: methane pyrolysis	
		Yellow: electrolysis powered through electricity from solar	
		Orange: electrolysis powered through electricity from wind	

Use as fuel...

Uses

- \rightarrow Direct combustion
 - Turbines
- \rightarrow Fuel cells
- In modern aircraft its deployment requires significant changes to the airplane/propulsion system to accommodate fuel storage and address associated thermal management challenges.

Global warming potential (GWP) values relative to $\ensuremath{\text{CO}_2}$

10 N 2011 N		GWP valu	ime horizon	
Industrial designation or common name	Chemical formula	Second Assessment Report (SAR)	Fourth Assessment Report (AR4)	Fifth Assessment Report (AR5)
Carbon dioxide	CO ₂	1	1	1
Methane	CH ₄	21	25	28
Nitrous oxide	N ₂ O	310	298	265

Montgolfier brothers, 1783

Airbus, 2023

Hydrogen value chain fields, interconnection and roles

1) Production

2) Storage

3) Distribution (storage)

4) End-user consumption

Source: Garcia-Navarro et al. (2023)

| 9

Hydrogen supply chain superstructure

RESOURCES:

Fuel

| 10

Big Picture Questions

- What role should fossil fuels play in the development of the hydrogen economy?
- Can Fossil Energy (FE) complement the introduction of renewable forms of hydrogen production?

 $Mt = 10^9 kg = billion kg$

- US ~ 10 MtH₂
- Worldwide, approximately 96% of H₂ is generated from fossil fuels, particularly from steam methane reforming (SMR) of natural gas but also from coal gasification.
- Could we, today, generate all H₂ via electrolysis from renewables?

Context

- $10 \text{ MtH}_2 = 10 \times 10^9 \text{ kg H}_2$ (10 billion kg); (Others use MMT).
- Ideal electrolysis electricity requirement (HHV) 141.9 MJ/kg = 39.4 kWh/kg

How much H_2 will we need?

U.S. Current use: 10 MtH₂

Progress and current status of the project

- 1. CO_{2e} emissions
- 2. Water use considerations Explicit and Implicit
- 3. Levelized Cost of Hydrogen and dynamic maps representation
- 4. Dashboard implementation status
- 5. Final considerations and future plans

1. CO2 footprint

Three different levels of carbon capture

| 16

Blue H2- carbon capture in heat production to drive SMR

Parameter 1: CH4 leakage (fugitive CH4).
Parameter 2: Indirect upstream emissions.
Parameter 3: Energy consumption in SMR
[kWh/m³]
Parameter 4: CO2 capture efficiency in SMR.
Parameter 5: CO2 capture in flue

After:

Howarth RW, Jacobson MZ. How green is blue hydrogen? Energy Sci Eng. 2021;9:1676–1687. https://doi.org/10.1002/ese3.956 26 July 2021

MATLAR (and Python)				Blue H2 (with flue gas capture);
			SMR process	
			CH4 consumed (g CH4/MJ)	14.0350
	4 h a t a 11 a a t	ha waan ta sat	CO2 produced (g CO2/MJ)	38.5087
An application	that allows t	ne user to set	Fugitive CH4 emissions (g CH4/MJ)	38.5087
(using sliders) the primary emission			Fugitive CH4 emissions (g CO2eq/MJ)	42.2454
narameters for SMR under three cases of			Direct CO2 emissions (g CO2/MJ)	5.7763
			CO2 capture rate	0.8500
CC has been developed in MAILAB			Energy to drive SMR	
			CH4 consumed (g CH4/MJ)	11.5724
			CO2 produced (g CO2/MJ)	31.7520
			Fugitive CH4 emissions (g CH4/MJ)	0.4050
				34.8330
	Emissions Sensitivity		Direct CO2 emissions (g CO2/MJ)	11.1132
			CO2 capture rate	0.6500
	Fugitive CH4 Percentage	0 0.39 0.78 1.17 1.56 1.95 2.34 2.73 3.12 3.51 3.9 4.29 4.68 5.07 5.46 5.85 6.24 6.63 7	Energy to power carbon capture	
	3.5% default		CH4 consumed (g CH4/MJ)	5.9160
	Indirect Upstream		CO2 produced (g CO2/MJ)	16.2322
Novti		0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10	Fugitive CH4 emissions (g CH4/MJ)	0.2071
Next.	kWh/m^3		Fugitive CH4 emissions (g CO2eq/MJ)	17.8073
Enable		2 2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.5	Direct CO2 emissions (g CO2/MJ)	16.2322
exploration of	U.S. DEPARTMENT OF			
uncertainty in	WENERG	AGY JAL DLOGY ITORY	Indirect upstream CO2 emissions (g CO	. 6.4870
these	NEINATIONAL		Total CH4 consumed (g CH4/MJ)	31.5235
these	TL TECHNOLOG		Total CO2 emitted (g CO2/MJ)	39.6087
parameters			Total fugitive CH4 emissions (g CO2eq/	94.8856
			Total emissions (g CO2eq/MJ)	134.4944

Distribution of CO₂eq estimates for the given input

Total emissions (g CO2eq/MJ)

Υ

Sampling using gaussians around base case estimate; 10⁵ samples (Sobol). Implemented in MATLAB via UQLab.

Blue H2- carbon capture in heat production to drive SMR

Parameter 1: CH4 leakage (fugitive CH4).
Parameter 2: Indirect upstream emissions.
Parameter 3: Energy consumption in SMR [kWh/m³]
Parameter 4: CO2 capture efficiency in SMR.
Parameter 5: CO2 capture in flue

20

Explicit and implicit water considerations for H₂

This effort seeks to quantify water usage in H2 production.

- Explicit (those dictated by the stoichiometry).
- Implicit opportunities for water savings primarily associated with meeting the energy needs.
 Water – Energy Nexus

Explicit Water Intensity

We have explored the disaggregation of this average [water withdrawal is around 20.6 gallons per kWh $^{[1, 2, 3]}$ and the average water consumption for cooling is about 0.47 gallons kWh⁻¹ $^{[1]}$.] leveraging mostly NREL studies of water consumption for different modes of electricity generation $^{[4]}$.

Cooling Technologies

https://www.nrdc.org/sites/default/files/power-plant-cooling-IB.pdf

Once-Through

Tower

Dry

- The water footprint is divided between water consumption and water withdrawal.
- Water usage is, in most cases, tied to the cooling technology employed in the energy conversion system.

GH PRESSURE

Cooling Technologies

Renewables

Fuel Type	Cooling	Technology	
PV	N/A	Utility Scale PV	
Wind	N/A	Wind Turbine	
		Trough	
	Tower	Power Tower	
		Fresnel	
CSD	Dry	Trough	
CSP		Power Tower	
	Hybrid	Trough	
		Power Tower	
	N/A	Stirling	
	Tower	Steam	
		Biogas	
Biopower	Once-through	Steam	
	Pond	Steam	
	Dry	Biogas	
		Dry Steam	
	Tower	Flash (freshwater)	
		Flash (geothermal fluid)	
		Binary	
Geothermal ¹		EGS	
Geothermal		Flash	
	Dry	Binary	
		EGS	
	Hybrid	Binary	
		EGS	
Hydropower	N/A	Aggregated in-stream and reservoir	

¹Most geothermal facilities can use geothermal fluids or freshwater for cooling.

Non-renewables

Fuel Type	Cooling	Technology
Nuclear	Tower	Generic
	Once- through	Generic
	Pond	Generic
	Tower	Combined Cycle
		Steam
		Combined Cycle with CCS
Natural Gas	Once-	Combined Cycle
Natural Gas	through	Steam
	Pond	Combined Cycle
	Dry	Combined Cycle
	Inlet	Steam
	Tower	Generic
		Subcritical
		Supercritical
		IGCC
		Subcritical with CCS
		Supercritical with CCS
Coal		IGCC with CCS
	Once- through	Generic
		Subcritical
		Supercritical
	Pond	Generic
		Subcritical
		Supercritical

Source: NREL/TP-6A20-50900 March 2011 A Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies Jordan Macknick, Robin Newmark, Garvin Heath, and KC Hallett

Water Consumption Comparisons

Drop down menu to specify user selected technology

Specific water consumptions for different needs according to electrolyzer efficiencies.

Dashboard Utility screenshot – A water requirements comparison tool.

Implicit Water Savings

- We have started exploring approaches to combine combustion processes and SOEC systems.
- We are interested in efficient ways to obtain flue gas composition (and water molar fraction in particular).

Schematic representation of potential use of flue gas water content in SOEC electrolysis.

Implicit Water Savings

- Example: a steady-state combustor modeled as a well-stirred reactor (evaluation of the effect of residence time on heat release and temperature).
- CANTERA toolkit will be useful in future explorations of the combustion-SOEC.

CANTERA results for a combustor burning natural gas with air. (a) Base case: equivalence ratio =0.5. Output from combustor example: Heat release and Temperature. (b) Modified case: equivalence ratio =0.5; (c) Added computation of Molar Fractions. Equivalence ratio =0.5; (d) Added computation of Molar Fractions. Equivalence ratio =0.8.

Source: Goodwin et al. (2023).

Levelized Cost of Hydrogen

Fundamental calculation used in the preliminary assessment of a H2 project.

Cost of Hydrogen and Electricity.

Considers the average net current cost of H2 generation over the lifetime of the plant.

Hydrogen plants:

- <u>NG SMR with CCS</u>
- NG SMR without CCS
- NG ATR with CCS
- Coal Gasification with CCS
- Coal Gasification without CCS
- Coal/Biomass Co-Gasification with CCS

Sub-costs:

- •Levelized Costs of Capital
- •Levelized Fixed Operating Costs
- •Levelized Variable Operating Costs
- •Levelized Fuel Costs
- •Levelized CO2 Transportation and Storage Costs

Eric Lewis, Shannon, Matthew Jamieson, Megan S. Henriksen, H. Scott Matthews ,John White, Liam Walsh, Jadon Grove, Travis Shultz, Timothy J. Skone, Robert Stevens (2022)

COMPARISON OF COMMERCIAL, STATE-OF-THE-ART, FOSSIL-BASED HYDROGEN PRODUCTION TECHNOLOGIES

DOE/NETL-2022/3241

Dynamic maps

Development of dynamic maps to visualize and evaluate

• The maps are used to display quantifiable data supported in a dynamic and interactive solution.

Electricity cost (\$/MWh)

Levelized cost of hydrogen (LCOH) (\$/kg)

in different regions of the U.S.

29

Dynamic maps

The user can Interact with the maps by:

1) LCOH Nationwide
 2) Allows for state selection for closer look
 3) Sectors: Industrial and Commercial

- LCOH for other technological routes will be considered for integration into the dashboard.

- More comprehensive overview of H2 economy.

30

| 31

Comparison among H2 routes

Water Consumption Comparisons

Water comparisons among electricity sources for hydrogen electrolysis

Drop down menu to specify user selected technology Specific water consumptions for different needs according to electrolyzer efficiencies.

Future plans

In this project:

a. Finalize the H2Dash with information from the last reports:

1) LCOH and electricity costs for different end-use sectors (dynamic maps);

2) Use of water to produce electricity to generate H2 via electrolysis.

b. Submission of collaborative publications:

1) Journal publication: manuscript being prepared reviewing the integration of fossil fuels and different technologies in the H_2 economy;

2) Conference: participation and publication of a paper summarizing the main results of the project.

| 33

After this project:

We plan to explore as a next project:

Fossil fuel emissions derived water for $\rm H_2$ production

Using a Proton Exchange Membrane Electrolyzer Stack (FFEDW / PEME stack)

*Could be used as reverse/regenerative fuel cell (either as a Fuel Cell or <u>Water Electrolysis</u>

m_P – products of combustion:

 $CO_2 + H_2O + others (NO_x, SO_x, CO, dioxins, furans, particulates...)$

34

Other achievements

Workforce training ۲

Rory Feinberg

CE Student

FAMU-FSU

Liam McConnell

ME Student

FAMU-FSU

Matthew Martor

MS Student

Georgia Tech

Postdoc

FAMU-FSU

Professor FAMU-FSU

Research Faculty BS-MS Student Georgia Tech FAMU-FSU Research Institute

Shadi Bilal

MS Student

FAMU-FSU

Shweta Nair ME Student Graduate Researcher FAMU-FSU FAMU-FSU

Tomas Solano

PhD Student

FAMU-FSU

Michael Johnson M.Sc. Student FAMU-FSU

Joseph Lupton Camilo Ordonez Teaching Faculty II MS Student FAMU-FSU FAMU-FSU

Training and development of students in the use of new tools and water-CO2-Energy relevant • processes,

Jonathan Niblack

ME Student

FAMU-FSU

- PI engaged with colleagues at UFPR (Brazil) on H₂ generation strategies for transportation; ۲
- Co-PI involved in H2Hub activities. ۲

Appendix

References:

Agnolucci et al., 2013. Journal of Hydrogen Energy, 38(26), pp.11189-11201.

Agnolucci, P., McDowall, W., 2013. International Journal of Hydrogen Energy, 38(13), pp.5181-5191.

Da Rosa, A. V., Ordóñez, J. C., 2021. Fundamentals of renewable energy processes, 4th ed., Elsevier, Academic Press, Cambridge, Massachusetts.

Garcia-Navarro, J. et al. 2023. Updates on Hydrogen Value Chain: A Strategic Roadmap. Global Challenges. https://doi.org/10.1002/gch2.202300073

Goodwin, D. G. et al., 2023. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. https://www.cantera.org, Version 3.0.0.

Grubert, E. Water consumption from electrolytic hydrogen in a carbon-neutral US energy system. Cleaner Production Letters, 2023. https://doi.org/10.1016/j.clpl.2023.100037

Howarth, R. W., Jacobson, M. Z., 2021. How green is blue hydrogen? Energy Science Engineering, 9:1676–1687. https://doi.org/10.1002/ese3.956

Hutson, S. S., 2004. (No. 1268). Geological Survey (USGS).

Incropera, F. P., 2015. Climate Change: A Wicked Problem. Complexity and Uncertainty at the Intersection of Science, Economics, Politics, and Human Behavior. Cambridge University Press. Lewis, E. et al., 2022. Comparison of Commercial, State-of-the-Art, Fossil-Based Hydrogen Production Technologies. National Energy Technology Laboratory (NETL), DOE/NETL-2022/3241. Macknick, J. et al., 2011. A Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies. NREL/TP-6A20-50900.

NREL/TP-6A20-50900 March 2011. A Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies. Jordan Macknick, Robin Newmark, Garvin Heath, and KC Hallett

Torcellini, P., Long, N. and Judkoff, R., 2003. NREL/TP-550-33905

U.S. Energy Information Administration (EIA). https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_6_a

U.S. IEA. International Energy Agency (IEA). https://www.iea.org

Webber, M.E., 2007. Environmental Research Letters, 2(3), p.034007.

Acknowledgments

We acknowledge with gratitude support from NETL and DOE.

Dpinions presented are solely ours and do not represent in any way an official position of DOE.

36

Thank you!

Juan C. Ordonez

FAMU-FSU College of Engineering

Florida A&M University/Florida State University

Contact Information: ordonez@eng.famu.fsu.edu

