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Project Overview (Overall Objectives)
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Technology Background
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Enhanced Thermal Condenser (ACC) with Advanced

Energy Storage Unit

air-side Enhancement

The new Air-Cooled Condenser
design with enhanced-fin cores
for improvement of air-side heat
transfer can yield significant
reduction in the surface-area
requirement and hence the size
of the ACC

Integrated PCM-TES in air-flow path of air-
C——= cooled steam condenser (ACC)

Reduces T operating constraint, and increases
Rankine cycle output and efficiency.

Reduced T, pesign increases ACC'’s AT,
thereby increasing both q and effectiveness
(reliable steady operation) of ACC.
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Technology Background

Selection of PCM (LINO,-3H,0)
and Stable Thermal-Cycling
Performance — thermal capacity
of LINO4-3H,0 over 1000
heating (melting) and cooling
(re-crystalization) cycles
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Self-seeded nucleation (or “cold-
fingering”) and phase-transition
stability of LiNO5-3H,0 during
thermal cycling



Technical Approach/Project Scope
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Heating: 1 MJ over 40 min period; Cooling: 1 MJ over 80 min
period; Air Pre-Cooler tube-fin heat exchanger size: ~ 420 W
(or ~450 W, or can be overdesigned for testing purposes)
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Progress and Current Status of Project
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Progress and Current Status of Project

e-NTU characteristics for scale-up of HX and energy / power
density of TES under thermal cycling
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Progress and Current Status of Project
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TES with 24 FPI — Performance testing results for 100 heating/ cooling

cycles with self-seeding of PCM (Lithium Nitrate Trihydrate)

PCM 10% PCM 30% PCM 50% PCM 70% PCM 90%
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Progress and Current Status of Project

Temperature [°C]

TES with 10 FPI — Performance testing results for 100 heating/ cooling
cycles with self-seeding of PCM (Lithium Nitrate Trihydrate)
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Progress and Current Status of Project

Compact HX PCM Encasement Length-Scale and Scale Up —
Reduced thermal resistance and enhanced TES performance
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Progress and Current Status of Project

Coupled TES and air pre-cooler heat exchanger performance test
system (1.0 MJ) with simulated diurnal temperature variation of inlet air




Progress and Current Status of Project

Performance (steady temperature control of air inlet to ACC) of a scaled-up lab-
scale 1.0 MJ TES over multiple heating/ cooling cycles

PCM 10% PCM 30% PCM 50% PCM 70% PCM 90%
Tin Tout

Cycles 55 - 60

E
o

Temperature [°C]
8

N
o

83.3
(o] (o] (o] .
S aWaYa¥Wa¥Wa : [ ' ] st ' : |
— 7.5 =« \ ] 4>;1'5"|¢ 1.5 I(— | | | |
. = I , Heat U0 : 1 |
- L] Heater | Exchanger ' | | | @ |
| i 0.2 HH T T T |
91.4 1 i — PCM —1 ] | I 9 3 3 6" L
o Q| T === | o o g 1
s - mn E“ Tin Tou ™ o
1.5—> «— 1 = \
(VU U A"- m o o Flow
. Eeld ‘ HH Conditioner
o o o flow e
Water I/0
Ports S~y A
fPlastic Enclosure
Temperature :
f Control =
31.8
PCM v

Compact
Heat Exchanger




Progress and Current Status of Project
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System Design for Scaled-up (10 MJ unit) Pilot-Scale Testing at
EPRI-Georgia Southern WCC
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Plans for future testing/development/
commercialization

+ Complete pilot-plant testing of the 10 MJ system at
WRCC, Southern Company, Smyrna, GA, over sustained
heating-cooling cycles so as to establish the set-up as a
demonstrator unit for potential commercialization

+ Pitch the pilot-scale results and project success to air-

cooled (and water-cooled) condenser manufacturers
> Evapco; SPX; Holtec; SPG

+ Pitch the pilot-scale results and project success to utilities
and power-plant companies (EPRI partners, and more)

+ Translate to large-scale commercial HVAC applications
and pitch to the associated air-cooled condenser

manufacturers
15



Outreach and Workforce Development
Efforts or Achievements

* Workforce Development —

» Trained and graduate two PhD and one MS students, including one
woman PhD engineer.

» Current training of two PhD students and one female MS student.
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Summary

+ Successfully completed stability re-evaluation of PCM (LiNO,-3H,0)

with results for 1000 heating/cooling cycle
> Results establish efficacy of self-seeding nucleation of PCM (cold finger
operation), thereby obviating need for nucleating agent additives

+ Successfully tested 100 kdJ capacity design of TES (10 fpi and 24 fpi

micro-channel heat exchanger) under cyclical heating and cooling

conditions for 100 continuous cycles
> Stable phase-transition and storage behavior of TES design

+ Successfully tested 1.0 MJ capacity system (TES coupled with air pre-

cooler heat exchanger) to establish stable predicted performance.

+ Construction of scaled-up pilot-plant system (10 MJ) nearly complete

at the WRCC facility of Southern Company, Smyrna, GA. Testing
expected to begin in May 2024
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Appendix

— These slides will not be discussed during the presentation but
are mandatory.
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Organization Chart

« Describe project team, organization, and participants.

— Link organizations, if more than one, to general project
efforts (1.e., materials development, design, systems
analysis, pilot unit operation, management, risk/cost
analysis, etc.).

* Please limit company specific information to that relevant to
achieving project goals and objectives.
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Organization Chart

University of Cincinnati (UC) —
Primary Investigators &
Project Lead

Thermal-Fluids & Thermal Processing

Laboratory, College of Engineering, UC

— Laboratory-scale system design and
performance testing

Electric Power Research
Evapco, Inc. — Industry Institute (EPRI) — Field
Design Consultant Partner Demonstrator Testing and
TEA Collaborator

Maulbetsch Consulting
— Industry Consultant
Partner
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Gantt Chart

Task Name

Task 1.0 - Project
Management and Planning

Task1 - Updated PMP
Milestone 1 - Updated PMP

Milestone 1.1 Data Management
Plan

Subtask 1.2 Technology
Maturation Plan

Milestone 1.2 Technology
Maturation Plan

Task 2.0 Design and
performance evaluation of

TES system

Subtask 2.1 Design of optimal
TES unit

Mileston 2.1 TES Design
finalized

Subtask 2.2 Fabrication of lab-
scale TES unit

Milestone 2 2 Fabricated TES
unit

Subtask 2.3 Testing of lab-scale
TES unit

Milestone 2 3 Lab-scale TES
performance established

Task3 - Design and

performance evaluation of air pre-

cooler (ACHX)
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s

uc
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Subtask 3.1 Design of enhanced UC, EPRI,

tube-fin ACHX
Milestone 3.1 Optimized ACHX
design

Subtask 3.2 Design o ptimization
of enhanced advanced ACC

Milestone 3.2 Optimized ACC
design

Evapco

Full Team

UC, EPRI,
Evapco,

Maulbetsch

Full Team
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Task 4 - Technology
Demons tration

Milestone 4 Technology
Demonstration

Subtask 4.1 Performance
modeling and optimization

Subtask 4 2 Fabrication of pilot-
scale components

Milestone 4.2 Pilot-scale
components fabricated

Subtask 4 3 Pilot-level testing

Task 5 - Techno-Economic
Analysis (TEA)

Subtask 5.1 Power plant
integration trade-off evaluation

Milestone 5.1 Preliminary TEA

Subtask 5.2 CAPEX and OPES
estimates

Milestone 5 2 Update of TEA
Subtask 5.3 Economic analysis

Final Report

UC. EPRI,
Evapco,
Maulbetscl

Full Team

Full Team

UC.EPRI

UC,EPRI

EPRI

EPRI,
Maulbetsch

EPRI

EPRI

EPRI, UC
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