Advanced Dry-cooling with Integrated Enhanced Air-Cooled Condenser and Daytime Load-shifting Thermal Energy Storage for Improved Power-Plant Efficiency DE-FOA-0002001

> Raj M. Manglik University of Cincinnati

> U.S. Department of Energy National Energy Technology Laboratory Resource Sustainability Project Review Meeting April 2-4, 2024

Project Overview

Funding (DOE and Cost Share): Total: \$1,857,330 Federal - \$1,485,086 and Cost Share - \$372,244

Overall Project Performance Period: February 01, 2021 – July 31, 2024

Raj M. Manglik (Principal Investigator) Milind A. Jog (Co-PI)

Andrew Howell (Industry Partner)

Jean-Pierre Libert (Industry Consultant)

Project Participants

John S. Maulbetsch (Consultant)

Project Overview (Overall Objectives)

Develop a novel and transformative dry-cooling system that integrates daytime peak air-load shifting thermal energy storage (TES), with an enhanced, highly compact and optimized aircooled condenser (ACC), to significantly increase power plant efficiency. The TES system, a phase-change-material (PCM) based heat exchanger, is integrated in the inlet air-stream of the ACC via an air pre-cooler (ACHX).

3

Technology Background

Integrated PCM-TES in air-flow path of aircooled steam condenser (ACC)

- Reduces T_C operating constraint, and increases Rankine cycle output and efficiency.
- ➢ Reduced T_{air, Design} increases ACC's ∆T_{Im} thereby increasing both q and effectiveness (reliable steady operation) of ACC.

The new Air-Cooled Condenser design with enhanced-fin cores for improvement of air-side heat transfer can yield significant reduction in the surface-area requirement and hence the size of the ACC

Technology Background

Latent Heat (J/g)

Selection of PCM (LiNO₃·3H₂O) and Stable Thermal-Cycling Performance – thermal capacity of LiNO₃·3H₂O over 1000 heating (melting) and cooling (re-crystalization) cycles

Self-seeded nucleation (or "cold-fingering") and phase-transition stability of $LiNO_3 \cdot 3H_2O$ during thermal cycling

Technical Approach/Project Scope

e-NTU characteristics for scale-up of HX and energy / power density of TES under thermal cycling

TES with 24 FPI – Performance testing results for 100 heating/ cooling cycles with self-seeding of PCM (Lithium Nitrate Trihydrate)

TES with 10 FPI – Performance testing results for 100 heating/ cooling cycles with self-seeding of PCM (Lithium Nitrate Trihydrate)

Compact HX PCM Encasement Length-Scale and Scale Up – Reduced thermal resistance and enhanced TES performance

11

Coupled TES and air pre-cooler heat exchanger performance test system (1.0 MJ) with simulated diurnal temperature variation of inlet air

Performance (steady temperature control of air inlet to ACC) of a scaled-up labscale **1.0 MJ** TES over multiple heating/ cooling cycles

System Design for Scaled-up (10 MJ unit) Pilot-Scale Testing at EPRI-Georgia Southern WCC

Plans for future testing/development/ commercialization

- Complete pilot-plant testing of the 10 MJ system at WRCC, Southern Company, Smyrna, GA, over sustained heating-cooling cycles so as to establish the set-up as a demonstrator unit for potential commercialization
- Pitch the pilot-scale results and project success to aircooled (and water-cooled) condenser manufacturers
 Evapco; SPX; Holtec; SPG
- Pitch the pilot-scale results and project success to utilities and power-plant companies (EPRI partners, and more)
- Translate to large-scale commercial HVAC applications and pitch to the associated air-cooled condenser manufacturers

Outreach and Workforce Development Efforts or Achievements

- Workforce Development
 - Trained and graduate two PhD and one MS students, including one woman PhD engineer.
 - > Current training of two PhD students and one female MS student.

Summary

- Successfully completed stability re-evaluation of PCM (LiNO₃·3H₂O) with results for 1000 heating/cooling cycle
 - Results establish efficacy of self-seeding nucleation of PCM (cold finger operation), thereby obviating need for nucleating agent additives
- Successfully tested 100 kJ capacity design of TES (10 fpi and 24 fpi micro-channel heat exchanger) under cyclical heating and cooling conditions for 100 continuous cycles
 - Stable phase-transition and storage behavior of TES design
- Successfully tested 1.0 MJ capacity system (TES coupled with air precooler heat exchanger) to establish stable predicted performance.
- Construction of scaled-up pilot-plant system (10 MJ) nearly complete at the WRCC facility of Southern Company, Smyrna, GA. Testing expected to begin in May 2024

Appendix

These slides will not be discussed during the presentation but are mandatory.

Organization Chart

- Describe project team, organization, and participants.
 - Link organizations, if more than one, to general project efforts (i.e., materials development, design, systems analysis, pilot unit operation, management, risk/cost analysis, etc.).
- Please limit company specific information to that relevant to achieving project goals and objectives.

Organization Chart

Gantt Chart

Task Name	Assigned Resource s		Year 1					Year 2						Year 3							ask 4 - Technology	UC, EPRI Evapco,	,												
		Q4	Q1	(22	Q3	3	Q4	Q1	Q	2	Q3	Q4	Q1		Q2	C	13	Q4	Q1	De	emons tration	Maulbetscl	h									 		
Task 1.0 - Project Management and Planning	UC																					ilestone 4 Technology emonstration	Full Team	1											•
Task 1 - Updated PMP	UC																				Su	ubtask 4.1 Performance odeling and optimization	Full Team	1											
Milestone 1 - Updated PMP	UC	•																				ubtask 4.2 Fabrication of pilot-		-											
Milestone 1.1 Data Management Plan	UC	•																			sc	cale components	UC, EPRI												
Subtask 1.2 Technology Maturation Plan	UC, EPRI																					ilestone 4.2 Pilot-scale omponents fabricated	UC, EPRI									•			
Wilestone 1.2 Technology	UC			•																	Su	ubtask 4.3 Pilot-level testing	EPRI	-											
Maturation Plan					_																	ask 5 - Techno-Economic nalysis (TEA)	EPRI, Maulbetscl	h											
performance evaluation of TESsystem	UC						1														Su	ubtask 5.1 Power plant tegration trade-off evaluation	EPRI	-											F
Subtask 2.1 Design of optimal TES unit	UC, EPRI, Evapco																					ilestone 5.1 Preliminary TEA							•						
Mileston 2.1 TES Design finalized	UC. Evapco						•															ubtask 5.2 CAPEX and OPES	EPRI												
Subtask 2.2 Fabrication of lab-	UC.																					ilestone 5.2 Update of TEA		-							•				F
scale TES unit	Evapco				_																	ubtask 5.3 Economic analysis	EPRI. UC	-			+	-							
Vilestone 2.2 Fabricated TES unit	UC							•													Fi	nal Report													
Subtask 2.3 Testing of lab-scale TES unit	UC																							1		II					I		 		
Milestone 2.3 Lab-scale TES performance established													•	•																					
Task 3 - Design and performance evaluation of air pre cooler (ACHX)	UC, EPRI, Evapco																																		
Subtask 3.1 Design of enhanced ube-fin ACHX	UC, EPRI, Evapco																																		
Vilestone 3.1 Optimized ACHX design	Full Team								•																										
Subtask 3.2 Design optimization of enhanced advanced ACC	UC, EPRI, Evapco, Maulbetsch																																		
Milestone 3.2 Optimized ACC	Full Team				+										•																				
	1							1-1-			1-1-									1	1													21	