

RESOURCE ASSESSMENT OF UNCONVENTIONAL OIL AND GAS SHALE FOR CRITICAL MATERIALS RECOVERY

Guangping Xu¹, Elisabeth Thomas¹, Mark J. Rigali¹, Yifeng Wang¹, Yongliang Xiong¹, Andrew Knight¹, Dustin Crandall², Thomas Paronish², Shichun Huang³

¹Sandia National Laboratories, ²National Energy Technology Laboratory, ³University of Tennessee, Knoxville

SNL PM: Hongyou Fan, NETL PM: Sandy Napolitano

Introduction

Why shale?

- The US has a huge amount of shale resources, ranking top 5 in the world
- The US has ~1 million production wells
- Many shale deposits have high metal contents

Project objective

- Quantify the contents of critical metals in major oil and gas shale reservoirs across the US
- Assess the extractability of critical metals, including REE, precious, and transition metals
- Explore the in-situ extractability of these metals using our chelator water solvents

Selected shale intervals & characterization

Marcellus shale (Dunham) core scan at 7460-7466'

Marcellus shale (Whipkey) core scans

Bakken sha	le core scans
------------	---------------

	Ni (ppm)	Ba (ppm)	Mn (ppm)	V (ppm)	REE (ppm)
8233.57	805	152	139	2272	193
8256.59	15	150	362	28	112

222

463.5 D

Characterization of Marcellus shale

7895.9_1 19 22 25

788

Conclusions and next steps

Conclusions

- Marcellus shales have abundant, co-existing veins of calcite, barite, and ankerite, and layers of pyrites
- The matrix of Marcellus shale with veins is dominantly calcite, which is the easiest mineral for leaching
- Marcellus shale has abundant barite vein, which itself is a critical mineral
- Marcellus shale ankerite vein has nearly 0.3% Ni and 0.16% Mn, and is economically viable
- Bakken shale shows enrichment of Zn (> 2200 ppm) and Ni (> 800 ppm)

Next steps

Co-existing pyrite and barite

- Finalize sample characterization
- Perform lab scale leaching tests on intervals of interest using environmentally friendly chelator-water solvent
- Perform flow through tests with core samples to mimic realistic extraction conditions

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Acknowledgement: Thanks Christian Harris, John Williard and Hector Garza for obtaining EPMA and SEM images, and Alicia Cruz-Uribe for LA-ICP analyses. Anthony Faiia at UTK is thanked for sulfur isotope measurement

