

INTEGRATED SYSTEM FOR METHANE EMISSIONS MONITORING, MAPPING, AND QUANTIFICATION

Solicitation: DE-FOA-0002616: iM4 Technologies, AOI-4: INTEGRATED METHANE MONITORING PLATFORM DESIGN Principal Investigator: Julio D. Lobo, Ph.D./M.B.A. Project Manager: Jennifer Lindahl Awardee: ABB, Inc. Award: 13737983

Abstract

The overall objective of this project is to create a comprehensive engineering, design, construction, deployment, and operating plan for an integrated system for continuous methane emissions monitoring, mapping, localization, and quantification across the entire natural gas supply chain and infrastructure. The system, which broadly includes Data Sources, Aggregators, and a Centralized Cloud Information Center, will enable rapid identification, localization, and characterization of super emitters (>10 kg/hour), intermittent sources, as well as chronic, persistent, smaller emission sources (below 10 g/hour).

Dashboard and Reporting

Architecture

- Dashboard concept with near real-time display of methane emission visual alerts at-a-glance. Each color-coded emission has linked embedded meta-data.
- National coverage including Global Information System (GIS) assets.

System-level Design

Optimize components and physical placement based on precision, reliability, power, historical environmental conditions, cost, and more

		 		_	_	 	 			_			 			_				
																			. 1	-
	_			_				_			-	_			_			_		

Measurements

Example node in the stationary monitoring network

Technology classes	Example technologies
Closed path	OA-ICOS, CRDS, TDLAS, LAS
Open path	Dual Frequency Comb
Open air	Thermal conductivity
IR Imaging	OGI
Closed path	OA-ICOS, CRDS, TDLAS, CEAS, LAS
Open path	WMS
Open air	XPOD
	Technology classes Closed path Open path Open air IR Imaging Closed path Open path Open air

Simple example: A sparse mesh grid of high precision (~3 ppb) sensors can achieve a near perfect detection rate for super-emitters (>10 kg/hr) in a high-density oil well region, e.g. Kern River Oil Field as shown.

Aerial mounted sensors	Closed path	OA-ICOS, TDLAS, CEAS, LAS				
(drones & airplanes)	Open path	Lidar				
	Closed path	OA-ICOS, TDLAS, CEAS				
Portable/handheld	Open path	OPLAS				
sensors	Open air	Thermal conductivity				
	IR Imaging	OGI				
Satellite based sensors	IR imaging	Hyperspectral				

Comprehensive review of available potential measurement devices.

Integrated Testing & Validation

- Follow-up surveys conducted with increasingly higher sensitivity, higher localizability, and quantification methods.
- System provides automated follow-up survey areas and work orders to link survey results to parent.
- Simulated (left) and collected data (Right) show potential and actual use of mobile sensors, such as ABB MobileGuard[™] for validation of emission, location, and quantification

Source-level and site-wide emissions can be visualized and quantified through

simulations (digital twin + CFD) \rightarrow optimized measurement strategies, e.g. stationary sensor placement, mobile survey paths.