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INTRODUCTION / OBJECTIVES PROPOSED EKD METHOD: FLUID WAVE SPEED OF SOUND DETERMINATION
Mud acoustic velocity reflects gas content, but direct measurement/identification can be challenging

Unexpected gas invasion (kick) into the borehole is and obscured by interference. The compressional wave, which is the first arrival at the probes, provides
still a persistent threat during the drilling. crucial data and an indirect measure of the mud velocity. Namely, from the arrival time (ty;,) and speed
Traditional kick detection has a significant time of the compressional wave (c,) we can also calculate the mud velocity, and thus aid gas fraction
lag (hours) and is affected by missed and false assessment and influx detection. | o
detection. The development of accurate Early Kick (1) Acoustic data from the 9) Analytica’ analysis with [ EarlyKick Detection |
Detection (EKD) is crucial to improvement in well Da— wellbore/simulation mud speed (c/)
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:_tool in the wellbore using CFD modeling to generate synthetic data and assist in EKD algorithm development.
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Based on slowness-time coherence method (Kimball and Marzetta, 1984) used commonly for
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Schematics of a LWD tool and a gas influx event (image?) array sonic waveforms to detect wave speed and arrival time:

Sonic signals are sensitive to gas fraction variations, enabling early kick detection

with LWD and acoustic methods. 1 [ [Z% T [t + (Z_m) n T”Z dt Waveforms recovered by receivers
p2(c,7) = MEr=0 < 5 (wellbore/simulation acoustic data)
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2D and 3D simulations using COMSOL were conducted to produce synthetic acoustic datain a

SIGNIFICANT WELLBORE PHYSICS: The sonic tool is based on the principles of wave wellbore-like scenario
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Discrete Bubbles Approach: FINAL REMARKS
e Separate domainswith ¢, = w
. : total - « The numerical model can accurately predict acoustic propagation in complicated environments (e.g., predict critical angles, speeds
* More complex: successive reflections of sounds p-wave and s-wave)
* Computationally more expensive  Identification of the mud wave in the total acoustic signal may be challenging due to multiple modes of propagation, simultaneous
I arrivals at the receive, and attenuation of the mud wave.
« Knowing the geometrical path and using the arrival time and velocity of the compressional head wave (and/or shear head wave), this
1b) Solid Mechanics Module for predicting 1c) Solid Acoustics Interaction couples effort shows how we can calculate the speed of sound of the mud wave. This provides an alternative means of assessing the mud
: .« s : : . . speed and therefore gas influx.
elaSt.lC ENAS beha.VIOr H SOl?dS based O.n the the p.ressure field in the fluid to t.he ) « FUTURE WORK: Explore how the bubble mixture treatment as opposed to homogenous mixture impacts wave train.
continuum equation of motion and a linear elastic wave (structure deformation) in « FUTURE WORK: Explore additional data analysis method (identifying a kick) for improved EKD: Signal analysis/machine
elastic material with specified properties: the solids : learning techniques.
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u - displacement vector F, = p:n
F, - body force
S -second Piola-Kirchhoff stress

n - surface normal
p; - total acoustic pressure
F, -load experienced by the structure
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