# **D**eveloping & Investigating Subsurface Storage Potential And Technical Challenges for Hydrogen (DISSPATCH H<sub>2</sub>)

**GTI Energy**: Michael Bradford (PhD),\* May Kwan (PE), Tekle Fida (PhD), Eric Boria (PhD) **Pacific Northwest National Laboratory**: Seunghwan Baek (PhD), Nicholas Huerta (PhD) **Oklahoma Geological Survey**: Nicholas Hayman (PhD), Benmadi Milad (PhD)

### **Underground Hydrogen Storage**

- H<sub>2</sub> storage at scale is needed to enable broader end-use in energy markets.
- Geologic storage of H<sub>2</sub> is currently primarily in salt caverns, which are uncommon in most regions of North America.
- Depleted oil and gas reservoirs provide larger storage volumes than salt caverns and they are commonly found in the U.S.
- However, depleted oil and gas reservoirs have higher chances of H<sub>2</sub> contamination and loss due to the presence of residual hydrocarbons, and H<sub>2</sub> permeation through the subsurface minerals.



### **Bench-Scale Testing**

#### Microbial Testing

Powders

- Changes in gas composition
- Fluid/wet chemistry analysis
- MIC gene monitoring
- Changes in microbial community

#### H<sub>2</sub> Injection Experiments

Rock characterization

**Rock Characterization** 

Pore Structure

Surface

**He Porosimetry** 

N<sub>2</sub> BET

Hg Intrusion

X-ray Tomography

X-ray Diffraction

SEM

- Fluid flow behavior
- Operational performance



**Microbial testing conditions** 



Possible subsurface reactions and consequences

\* Corresponding contributor: mbradford@gti.energy

Properties to be measured and experimental Methods

https://doi.org/10.1144/SP528-2022-88



#### **DISSPATCH H<sub>2</sub> Project Overview**

- Determine the feasibility of using Oklahoma's prolific depleted oil and gas reservoirs in the Anadarko Basin to enable the transition to a carbon-free energy infrastructure.
- Characterize H<sub>2</sub> movement in representative reservoir and seal rocks in the presence of remnant reservoir fluid (containing hydrocarbons) and brine.
- Assess operational risks including storage underperformance due to geochemical or microbially-enabled processes or repeated storage-delivery cycles.

### **Modeling & Mapping**

#### **Objectives:**

- Compile available core data from ~10,000 Oklahoma wells and samples from >50,000 wells, well logs, seismic data, and production reports.
- Create a geologic model of the area and representative maps of the basin-wide geological data highlighting hydrogen storage potential and supporting development of strategies for working and coordinating with other state agencies on regulatory and EJ topics.
- Conduct detailed modeling to estimate hydrogen gas movement and loss within the reservoir and caprock utilizing experimental data.



Locations where core and fluid samples were taken in the Anadarko Basin



- Assess the technical and market potential of new commercial-scale underground storage sites for safely injecting, storing, and withdrawing H<sub>2</sub> from porous media in the region.
- Provide recommendations for a follow-on project focused on the field-scale testing and demonstration project including risk mitigation strategies

### **Societal Considerations**

**Objective:** Identify community and local workforce benefits, by:

- 1. Advancing DEIA through recruiting, contracting, and the Technical Advisory Committee membership, and community benefits tools training
- 2. Identifying communities likely to benefit from jobs created by hydrogen storage projects in Oklahoma
- 3. Providing public access to data on workforce impacts, both online and through minority-serving institutions.

#### **Preliminary Workforce Analysis Findings**

- Early assessments of areas being explored for underground hydrogen storage potentially overlap with areas with workforce experienced in the oil and gas industry.
- There is ample opportunity for future workforce benefits to flow to members of Tribal Nations and disadvantaged communities.
- Updates to workforce skills and Health and Safety training can leverage the existing workforce development of adjacent industries.

## Acknowledgement

This material is based upon work supported by the U.S. Department of Energy, Office of Fossil Energy and Carbon Management, under Award Number DE-FE0032351.